DOI QR코드

DOI QR Code

DENSE SETS IN WEAK STRUCTURE AND MINIMAL STRUCTURE

Modak, Shyamapada

  • Received : 2012.09.14
  • Published : 2013.07.31

Abstract

This paper is an attempt to study and introduce the notion of ${\omega}$-dense set in weak structures and the notion of m-dense set in minimal structures. We have also investigate the relationships between ${\omega}$-dense sets, $m$-dense sets, ${\sigma}({\omega})$ sets, ${\pi}({\omega})$ sets, $r({\omega})$ sets, ${\beta}({\omega})$ sets, m-semiopen sets and $m$-preopen sets. Further we give some representations of the above generalized sets in minimal structures as well as in weak structures.

Keywords

GTS;m-dense set;m-semiopen set;m-preopen set;${\omega}$-dense set

References

  1. M. Alimohammady and M. Roohi, Fixed point in minimal spaces, Nonlinear Anal. Model. Control 10 (2005), no. 4, 305-314.
  2. M. Alimohammady and M. Roohi, Linear minimal spaces, Chaos Solitons Fractals 33 (2007), no. 4, 1348-1354. https://doi.org/10.1016/j.chaos.2006.01.100
  3. A. Csaszar, Generalized open sets, Acta Math. Hungar. 97 (1997), no. 1-2, 65-87.
  4. A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), no. 4, 351-357. https://doi.org/10.1023/A:1019713018007
  5. A. Csaszar, Weak structures, Acta Math. Hungar. 131 (2011), no. 1-2, 193-195. https://doi.org/10.1007/s10474-010-0020-z
  6. M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J. 27 (1987), no. 2, 135-142.
  7. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41. https://doi.org/10.2307/2312781
  8. H. Maki, J. Umehara, and T. Noiri, Every topological space is pre T1/2, Men. Fac. Sci. Kochi Univ. Ser. A Math. 17 (1996), 33-42.
  9. A. S. Mashhour, M. E. AbD El-Mosef, and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
  10. W. K. Min, m-semiopen sets and M-semicontinuous functions on spaces with minimal structures, Honam Math. J. 31 (2009), no. 2, 239-245. https://doi.org/10.5831/HMJ.2009.31.2.239
  11. W. K. Min, On minimal semicontinuous functions, Commun. Korean Math. Soc. 27 (2012), no. 2, 341-345. https://doi.org/10.4134/CKMS.2012.27.2.341
  12. W. K. Min and Y. K. Kim, On minimal precontinuous functions, J. Chun. Math. Soc. 22 (2009), no. 4, 667-673.
  13. W. K. Min and Y. K. Kim, m-preopen sets and M-precontinuity on spaces with minimal structures, Adv. Fuzzy Sets Syst. 4 (2009), no. 3, 237-245.
  14. O. B. Ozbakir and E. D. Yildirim, On some closed sets in ideal minimal spaces, Acta. Math. Hungar. 125 (1009), no. 3, 227-235.

Cited by

  1. gm-continuity on generalized topology and minimal structure spaces vol.20, 2016, https://doi.org/10.1016/j.jaubas.2014.07.003
  2. ON THE GEOMETRY OF LORENTZ SPACES AS A LIMIT SPACE vol.51, pp.4, 2014, https://doi.org/10.4134/BKMS.2014.51.4.957