Phytosociological Study and Spatial autocorrelation on the Forest Vegetation of Mt. Yeonae at Gijang-gun

Choi, Byoung-Ki;Huh, Man Kyu

  • Received : 2013.06.03
  • Accepted : 2013.10.30
  • Published : 2013.11.29


Mt. Yeonae is at Gijang-gun in Busan and is surrounded by farming lands on three sides. The search for the species composition and dynamics of local communities were studied at Mt. Yeonae of how spatial similarity decays with geographic distance. The index values of Z$\ddot{u}$rich-Montpellier School's phytosociology at the 12 plots was compared to a distribution of similarly using 20 m quadrates at 12 sites. The specific communities were five including Pinus densiflora - Quercus variabilis community. Six species were significant similarity between neighboring sites by using the spatial autocorrelation coefficient, Moran's I. If Mt. Yeonae was destroyed by an artificial action, some spatial correlated species such as P. densiflora and Q. variabilis will be collapsed because of no maintaining the effective population sizes.


Mt. Yeonae;Species composition;Phytosociology;Spatial autocorrelation


  1. Bradshaw, A. D., 1974, Some evolutionary consequences of being a plant, Evol. Biol., 5, 25-47.
  2. Cliff, A. D., Ord, J. k., 1971, Evaluating the percentage points of a spatial autocorrelation coefficient, Geographical Analysis 3, 51-62.
  3. Ehrlich, P. R., Raven, P. H., 1969, Differentiation of populations, Science, 165, 1228-1232.
  4. Fujiwara, K., 1978, Phytosociological investigation of the evergreen broad-leaved forests of Japan, Ph. D. Dissertation, Yokohama National University, Yokohama City, Japan.
  5. Huh, M. K., 2011. Analysis of plant species community within upland wetlands at Mt. Ilgwang, J. Environ. Sci., 20, 427-434.
  6. Laurance, W. F., 2007, Forest destruction in tropical Asia, Current Science, 93, 1544-1550.
  7. Miyawaki, A., Okuda, S., Fujiwara, K., 1994, Handbook of Japanese Vegetation. Shibundo, Tokyo.
  8. Roughgarden, J., 1989, The structure and assembly of communities, in: Roughgarden, J., May, R. M. and Levin, S. A. (eds.), Perspectives in Ecological Theory, Princeton University Press, Princeton, N.J., 203-226.
  9. Sakai, R. R., Oden, N. L., 1983, Spatial pattern of sex expression in silver maple (Acer saccharium L.): Morisita's index and spatial autocorrelation, Am. Nat., 122, 489-508.
  10. Sokal, R. R., Oden, N. L., 1978a, Spatial autocorrelation in biology 1. Methodology, Biol. J. Linn. Soc., 10, 199-228.
  11. Sokal, R. R., Oden, .N. L., 1978b, Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest, Biol. J. Linn. Soc., 10, 229-249.
  12. Soule, M. E., Bolger, D. T., Alberts, A. C., 1988, Reconstructed dynamics of urban habitat islands, Conser. Biol., 2, 75-91.
  13. Tilghman, N. G., 1987, Characteristics of urban woodlands affecting breeding bird diversity and abundance, Land & Urban Plan., 14, 481-495.
  14. Vane-Wright, R. I., Humphries, C. J., Williams, P. H., 1991, What to protect? Systematics and the agony of choice, Biol. Conser., 55, 235-254.
  15. Webb, C. O., 2000, Exploring the phylogenetic structure of ecological communities: an example for rain forest trees, Am. Nat., 156, 145-155.
  16. Webb, C. O., Peart, D. R., 1999, Seedling density dependence promotes coexistence of Bornean rain forest trees, Ecology, 80, 2006-2017.[2006:SDDPCO]2.0.CO;2
  17. Wiens, J. A., 1989, Spatial scaling in ecology, Functional Ecology, 3, 385-397.
  18. Wright, S. J., Muller-Landau, H. C., 2006, The future of tropical forest species, Biotropica, 38, 287-301.