DOI QR코드

DOI QR Code

Synthesis of (Co,Mg)Al2O4 and (Ni,Mg)Al2O4 Blue Ceramic Nano Pigment by Polymerized Complex Method

착체중합법을 이용한 (Co,Mg)Al2O4 및 (Ni,Mg)Al2O4 청색 나노 무기안료 합성

  • Son, Bo-Ram (Icheon Branch, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Yoon, Dea-Ho (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Han, Kyu-Sung (Icheon Branch, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Cho, Woo-Suk (Icheon Branch, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering & Technology (KICET))
  • 손보람 (한국세라믹기술원 이천분원) ;
  • 윤대호 (성균관대학교 공과대학 신소재공학) ;
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 조우석 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원)
  • Received : 2013.08.21
  • Accepted : 2013.11.12
  • Published : 2013.11.30

Abstract

In this study, the properties of blue inorganic nano-pigments with a spinel structure were systematically investigated. We report the preparation of a blue ceramic nano-pigment and the Co and Ni substitutional effects on the blue color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of cobalt and nickel-based blue ceramic nano-pigments. Various compositions of $Co_xMg_{1-x}Al_2O_4$ and $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using apolymerized complex method. The obtained powder was preheated at $400^{\circ}C$ for 5 h and then calcined at $1000^{\circ}C$ for 5 h. XRD patterns of the (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ samples showed a single phase of the spinel structure in all compositions. TEM results indicated nano-sized pigments for (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ with a particle size ranging from 20 to 50 nm. The characteristics of the color tones of (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ were analyzed by CIE $L^*a^*b^*$ measurements. In addition, the thermal stability and the binding characteristics of (Co,Mg)$Al_2O_4$, (Ni,Mg)$Al_2O_4$ are discussed in terms of the TG-DSC and FT-IR results, respectively.

References

  1. M. Cain and R. Morrell, "Nanostructured Ceramics: A Review of Their Potential," Appl. Organomet. Chem., 15 [5] 321-33 (2001). https://doi.org/10.1002/aoc.153
  2. Z. Hu, M. Xue, Q. Zhang, Q. Sheng, and Y. Liu, "Nanocolorants: A Novel Class of Colorants, the Preparation and Performance Characterization," Dyes Pigm., 76 [1] 173-78 (2008). https://doi.org/10.1016/j.dyepig.2006.08.026
  3. P. M. T. Cavalcante, M. Dondi, G. Guaini, M. Raimondo, and G. Baldi, "Colour Performance of Ceramic Nano-pigments," Dyes Pigm., 80 [2] 226-32 (2009). https://doi.org/10.1016/j.dyepig.2008.07.004
  4. S. K. Biswas, D. Dhak, A. Pathak, and P. Pramanik, "Chemical Synthesis of Environment-Friendly Nanosized Yellow Titanate Pigments," Mater. Res. Bull., 43 [3] 665-67 (2008). https://doi.org/10.1016/j.materresbull.2007.04.001
  5. H. -T. Wu, M. -J. Lee, and H. -M. Lin, "Nano-particles Formation for Pigment Red 177 via Continuous Supercritical Antisolvent Process," J. Supercrit. Fluids, 33 [2] 173-82 (2005). https://doi.org/10.1016/j.supflu.2004.06.001
  6. A. Burgyan, "Characterization and Identification of the Mixed Metal Oxides and Ceramic Pigments Manufactured in the U.S.," Interceram, NR 1 30-32 (1979).
  7. E. S. Kharashvili, "Trends in Developing Ceramic Pigments," Glass Ceram., 42 [9-10] 459-63 (1985). https://doi.org/10.1007/BF00700679
  8. R. W. Batchelor, "Modern Inorganic Pigment," Trans. Br. Ceram. Soc., 73 [8] 297-30 (1974).
  9. G. T. Chandrappa, S. Ghosh, and K. C. Pattil, "Synthesis and Properites of Willemite, $Zn_2SiO_4,\;and\;M^{2+}:\;Zn_2SiO_4$ (M = Co and Ni)," J. Mater. Synth. Process., 7 [5] 273-79 (1999). https://doi.org/10.1023/A:1021816803246
  10. I. H. Gul, A. Maqsood, M. Naeem, and M. N. Ashiq, "Optical, Magnetic and Electrical Investigation of Cobalt Ferrite Nanoparticles Synthesized by Co-precipitation Route," J. Alloys Compd., 507 [1] 201-06 (2010). https://doi.org/10.1016/j.jallcom.2010.07.155
  11. Z. Mesikova, P. Sulcova, and M. Trojan, "Preparation and Practical Application of Spinel Pigment $Co_{0.46}Zn_{0.55}(Ti_{0.064}Cr_{0.91})_2O_4$," J. Therm. Anal. Calorim., 84 [3] 733-36 (2006). https://doi.org/10.1007/s10973-005-7543-5
  12. P. Barpanda, S. K. Behera, P. K. Gupta, S. K. Pratihar, and S. Bhattacharya, "Chemically Induced Order Disorder Transition in Magnesium Aluminium Spinel," J. Eur. Ceram. Soc., 26 [13] 2603-26 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.04.032
  13. S. Yang, P. Y. Zavalij, and M. S. Whittiugham, "Hydrothermal Synthesis of Lithium Iron Phosphate Cathodes," Electrochem. Commun., 3 [9] 505-50 (2001). https://doi.org/10.1016/S1388-2481(01)00200-4
  14. M. A. E. Sanchez, G. E. S. Brito, M. C. A. Fantini, G. F. Goya, and J. R. Matos, "Synthesis and Characterization of $LiFePO_4$ Prepared by Sol-gel Technique," Solid State Ionics, 177 [5-6] 497-50 (2006). https://doi.org/10.1016/j.ssi.2005.11.018
  15. K. H. Choi, "Low Temperature Synthesis of the Tin Doped Indium Oxide Nanopowders by Citrate Process and Their Sintering Behavior (in Korean)," pp. 22-25, Ph. D. Shim, Hanyang University, Seoul, 2003.
  16. V. Sepelak and K. D. Becker, "Comparison of the Cation Inversion Parameter of the Nanoscale Milled Spinel Ferrites with that of the Quenched Bulk Materials," Mater. Sci. Eng., A, 375 [1-2] 861-86 (2004).
  17. M. Llusar, A. Fores, J. A. Badenes, J. Calbo, M. A. Tena, and G. Monros, "Colour Analysis of Some Cobalt-based Blue Pigment," J. Eur. Ceram. Soc., 21 [8] 1121-30 (2001). https://doi.org/10.1016/S0955-2219(00)00295-8
  18. S. M. Kim and S. H. Kim, "Synthesis and Electrochemical Properties of $LiFePO_4$ by Citrate Process (in Korean)," Trans. Kor. Hydrogen New Energy Soc., 22 728-34 (2011).
  19. N. N. Boguslavska, E. F. Venger, N. M. Vernidub, Y. A. Pasechnik, and K.V. Shportko, "Reststrahlen Spectroscopy of $MgAl_2O_4$ Spinel," Semicond. Phys., Quantum Electron. Optoelectron., 5 [1] 95-100 (2002).
  20. P. Tarte, "Infra-red Spectra of Inorganic Aluminates and Characteristic Vibrational Frequencies of $AlO_4$ Tetrahedra and $AlO_6$ Octahedra," Spectrochim. Acta., 23 [7] 2127-43 (1967). https://doi.org/10.1016/0584-8539(67)80100-4
  21. A. Y. Chapskaya, N. I. Radishevskaya, N. G. Kasatskii, O. K. Lepakova, Y. S. Naiborodenko, and V. V. Vereshchagin, "The Effect of Composition and Synthesis Conditions on the Structure of Cobalt Bearing Pigment of the Spinel Types," J. Glass Ceram., 62 [11-12] 27-29 (2005). https://doi.org/10.1007/s10717-005-0025-1
  22. L. F. C. Koroleva, "Synthesis of Spinel-based Ceramic Pigments From Hydrocarbonates," Glass Ceram., 61 9-10 (2004). https://doi.org/10.1023/B:GLAC.0000026761.65840.58
  23. C. Wang, S. Liu, L. Liu, and X. Bai, "Synthesis of Cobaltaluminate Spinels via Glycine Chelated Precursors," J. Mater. Chem. Phys., 96 [2-3] 361-37 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.066
  24. K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds," 4th Ed., pp. 231, Wiley Press, New York, 1986.
  25. N. Thanabodeekij, M. Sathupunya, A. M. Jamieson, and S. Wongkasemjit, "Correlation of Sol-gel Processing Parameters with Microstructure and Proerties of a Ceramic Product," Mater. Charact., 50 [4-5] 325-37 (2003). https://doi.org/10.1016/j.matchar.2003.08.001

Cited by

  1. Thermal and chemical stability evaluation of white ceramic pigment for digital inkjet printing vol.26, pp.5, 2016, https://doi.org/10.6111/JKCGCT.2016.26.5.201