분쇄조제로 Crude Glycerin을 사용한 시멘트 및 콘크리트의 기초적 특성

유승엽* · 심연석 · 장경혁 · 배종기 · 구자순 · 이연재
<동양시스템 기술연구소>

1. 서론

분쇄공정은 시멘트 제조공정 중 마지막 단계로 소성공정과 함께 최종 제품의 성능을 결정하는 중요한 공정이다.

분쇄의 목적은 시멘트 블癗서를 표면적이 큰 미립자로 만들여 시멘트의 반응성을 높이고, 혼합제로 사용되는 척물질(L-Slag, 고로수쇄슬래그)을 분쇄하여 혼합효과를 높게 하는 것이다.

분쇄조제는 분쇄매체(강구와 라이너)에 부착되는 코팅이나 미립자 2차 입자를 생성하는 현상과 조립자에 미립자가 부착하는 현상을 감소시켜 분쇄 및 생산 성능을 향상시키고, 에너지를 절감하기 위해 사용되는 물질로서 글리콜류(모노에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜, 글리세린), 아민류(모노 에탄올아민, 디에탄올아민, 트리에탄올아민), 요소, 리그닌실질산소다, 아미너세테이트, 카본올, 트라이소프로필아민, 아미노세테이트, 염산 올, 인산나트륨 등이 분쇄효과가 높은 것으로 알려져 있다.

글리콜류의 한 종류인 글리세린(화학식 : C₃H₈O₃)은 유지(油脂)가 가수분해 할 때 지방산과 함께 생성되는 액체인데, 최근 석유자원의 고갈에 대한 우려와 대기오염 감소를 목적으로 경비용 바이오디젤 대체 사용이 의무화 되면서 식품상품이나에서 에스테르화반응을 거쳐 바이오디젤을 추출하고 난은 부산물인 Crude glycerine(글리세린 함량 90%이하)의 발생량도 증가하고 있다.

따라서 본 연구에서는 Lab 및 실공정에 Crude glycerine를 분쇄조제로 사용한 시멘트 및 콘크리트의 기초적 특성을 분석함으로써 분쇄조제로서 Crude glycerine의 활용 가능성을 검토하였다.

2. 이론적 고찰

2.1 분쇄조제

분쇄조제는 미량의 점가로 분쇄 효율 개선, 미분 생성량 증대 또는 제품 성장의 개선을 도모할 수 있는 점가제로, 지금까지 이용되어 온 주요 분쇄조제의 예를 표 1에 나타냈다.

분쇄조제는 분쇄매체(강구와 라이너)에 부착되는 코팅이나 미립자 2차 입자를 생성하는 현상 및 조립자에 미립자가 부착하는 현상을 감소시켜 분쇄를 촉진한다. 특히, 시멘트의 경우 과분쇄 시 미립자와의 중가된 표면에너지에 의하여 응용이 심화되고, 이때 조제는 분말 표면에 흡착층을 만들어 표면에너지 작용을 줄여 합성물질 및 금성의 채결력을 역제하는 작용을 한다. 그러나, 시멘트 및 공정상에서 분쇄조제는 필요 점가시간, 분쇄안도, 강구 및 라이너의 마모, 분금, 점진, 수송, 저장 등에 영향을 주기 때문에, 조제 사용 시 및 제품 및 순환장의 제어, 알 통풍량 및 질적 등에 대한 조업 조건 변경이 필요하다.

- 174 -
표 1 주요 분쇄조제의 예

<table>
<thead>
<tr>
<th>구분</th>
<th>분쇄조제</th>
</tr>
</thead>
<tbody>
<tr>
<td>건식분쇄</td>
<td>액체분쇄</td>
</tr>
<tr>
<td>액체</td>
<td>메탄올, 에탄올, 1-부탄올 등의 알코올류, 에틸렌글리콜, 프로필렌글리콜 등의 غ리콜류, 트리에탄올아미노순의 아민류, 에테르의 등이 금속알킬케스티드류, 울레산, 카프릴산 등의 지방산</td>
</tr>
<tr>
<td>고체</td>
<td>스테아린산, 스테아리스산나트륨 등의 지방산 및 지방산염, 아마이세테이트</td>
</tr>
<tr>
<td>습식분쇄</td>
<td>도레실암모늄클로라이드 등의 양이온성 개연화성 재, 만산나트륨, 염화나트륨, 구산나트륨 등의 무기염</td>
</tr>
</tbody>
</table>

그림 1 바이오 디젤 제조 과정

2.2 Crude Glycerin

Crude glycerin은 그림 1의 과정과 같이 식물성 기름에서 에스테르화반응을 거쳐 바이오 디젤을 추출하고 남은 무산물로 정제과정을 통해 제조화하여 고분자 합성의 원재료 및 보습제, 전환성 비산방지제 등 다양한에서 사용되고 있다.

3. Lab Test

3.1 실험계획

표 2는 분쇄조제 종류에 따른 Lab Test 계획을 나타낸 것이다. 분쇄조제 종류에 관계없이 분쇄조제 사용량을 200ppm으로 고정하고 소형 테스트 밴을 사용하여 목표 비료면적인 3400±100을 반복시키는 조정의 시간동안 분쇄를 실시하였다. 분쇄조제 종류에 따른 분쇄물의 특성은 비교적, 평균입경, 입도 분포, 전사량을 측정하였고, 모르타르의 특성은 폼도값 비 및 압축강도 측정하였다.

- 175 -
표. 2 Lab Test 계획

<table>
<thead>
<tr>
<th>실험요인</th>
<th>실험수준</th>
</tr>
</thead>
<tbody>
<tr>
<td>분쇄조제 사용량 (ppm)</td>
<td>200</td>
</tr>
<tr>
<td>목적표 비표면적</td>
<td>3400±100</td>
</tr>
<tr>
<td>분쇄시간</td>
<td>실험을 통해 결정</td>
</tr>
<tr>
<td>분쇄조제 종류</td>
<td>DEG</td>
</tr>
<tr>
<td></td>
<td>Crude Glycerin</td>
</tr>
<tr>
<td></td>
<td>A사 제품</td>
</tr>
<tr>
<td>분쇄물 특성</td>
<td>비표면적</td>
</tr>
<tr>
<td></td>
<td>평균임경</td>
</tr>
<tr>
<td></td>
<td>정사각 (44, 88μm)</td>
</tr>
<tr>
<td>모르타르 특성</td>
<td>풀로길비</td>
</tr>
<tr>
<td></td>
<td>암축강도</td>
</tr>
</tbody>
</table>

표. 3 클링커 및 중화석고 화학분석 결과

<table>
<thead>
<tr>
<th>구분</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>SO₃</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>T.A</th>
<th>FCaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>클링커</td>
<td>21.68</td>
<td>6.14</td>
<td>3.88</td>
<td>63.76</td>
<td>2.82</td>
<td>0.39</td>
<td>1.28</td>
<td>0.09</td>
<td>0.93</td>
<td>1.55</td>
</tr>
<tr>
<td>중화석고</td>
<td>0.06</td>
<td>0.02</td>
<td>0.09</td>
<td>29.60</td>
<td>-</td>
<td>42.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

표. 4 분쇄조제 종류별 특성

<table>
<thead>
<tr>
<th>분쇄조제종류</th>
<th>중금속 함량 (ppm)</th>
<th>밀도 (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEG</td>
<td>Pb 0.44</td>
<td>Cu 1.07</td>
</tr>
<tr>
<td>A사</td>
<td>Pb 2.54</td>
<td>Cu 0.74</td>
</tr>
<tr>
<td>CG</td>
<td>Pb 0</td>
<td>Cu 1.07</td>
</tr>
</tbody>
</table>

3.2 사용재료 및 실험방법

분쇄에 사용된 재료는 당상에서 1종 보통 포틀랜드 시멘트 제조 시 사용하는 클링커로 제작하여 Jaw Crusher에서 적정 약 5mm이하로 분쇄한 클링커 95%, 중화석고 5%를 사용하여 소형 테스트 밑을 사용하여 분쇄를 실시하였다. 이에, 클링커와 중화석고의 화학분석 결과는 표 3과 같고, 분쇄조제 종류별 특성은 표 4와 같다.

3.3 실험결과 및 분석

(1) 시멘트의 특성

그림 2-5는 분쇄조제 종류별 클링커의 분쇄시간, 시멘트의 비표면적, 평균임경, 전사량 및 염도분포를 나타낸 것이다.

분쇄조제 200ppm을 동일 클링커에 적용하여 60분 동안 분쇄를 실시한 후 비표면적을 측정한 결과DEG는 3,167cm²/g, A사 제품은 3,193cm²/g, CG는 3,141cm²/g로 나타나 목표 비표면적을 달성하기 위해 분쇄시간을 증가시켰는데, DEG는 7분, A사 제품 및 CG는 8분을 추가로 분쇄함으로써 목표 비표면적을 달성하였다.
평가기준은 A社 제품, DEG, CG가 순으로 작은 것으로 나타났고, 전사량은 DEG, A社 제품, CG가 순으로 크게 나타났으며, 압도본포는 분쇄조제별로 약간의 차이는 있으나 전반적으로 유사한 경향으로 나타났다. 이때, 분쇄조제 종류별 분쇄에서 부착되는 코팅이나 미립자 가 2차 입자를 생성하는 현상 및 조립자에 미립자가 부착하는 현상은 발생하지 않아 분쇄조제로 CG의 사용이 가능할 것으로 사료된다.

(2) 모르타르의 특성

그림 6~7은 분쇄조제 종류에 따른 모르타르의 플로갈비 및 압축강도를 나타낸 것이다. 플로갈 비는 DEG, CG, A社 제품 순으로 크게 나타났고, 압축강도는 채양에 관계없이 DEG, A社 제품, CG 순으로 높게 나타났는데, 분쇄조제 종류에 관계없이 KS L 5201규정을 상회하는 것으로 나타났다.
표 5 실험적 Test 계획

<table>
<thead>
<tr>
<th>실험요인</th>
<th>실험수준</th>
</tr>
</thead>
</table>
| 분쇄조제 종류 | • DEG
 • Crude Glycerin |
| 목표 비교면적 | • 3400±100 |
| 분쇄조제 사용량 (ppm) | • 실험을 통해 결정 |
| 분쇄물 특성 | • 비교면적
 • 44μm 잔사량 |
| 모프타르 특성 | • 품질 비
 • 압축강도 |
| 콘크리트 특성 | • 슬럼프
 • 압축강도
 • 공기량 |

표 6 콘크리트의 배합

<table>
<thead>
<tr>
<th>W/B (%)</th>
<th>S/a (%)</th>
<th>실험 배합(kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>55.8</td>
<td>48.9</td>
<td>178</td>
</tr>
</tbody>
</table>

3.4 소결

CG를 분쇄조제로 사용한 경우 분쇄비례에 부착되는 코팅이나 미립자로 생성하는 현상 및 조립자에 미립자가 부착하는 현상은 발생하지 않았고, 모프타르의 압축강도는 KS L 5201규정을 상회하는 것으로 나타나 본체조제로 적용이 가능할 것으로 사료된다.

4. 실험적 Test

4.1 실험계획

표 5는 본체조제 종류에 따른 실험적 Test 계획을 나타낸 것이다. 본체조제 종류별 목표 비교면적 3400±100을 만족시키는 사용량을 적용하여 분쇄를 실시하였다. 이때, 분쇄조제 공정적용은 종류별로 8시간씩 교대로 총 4일간 적용하였고, 분쇄조제 두입 후 생산이 안정되는 시점에 샘플링하여 분석 및 실험에 활용하였다. 분쇄조제 종류에 따른 분쇄물의 특성은 비교면적 및 잔사량을 측정하였고, 모프타르의 특성은 품질 비 및 압축강도, 콘크리트의 특성은 슬럼프, 공기량 및 압축강도를 측정하였다.

4.2 실험방법

당시 측정 중 1개의 킬슨을 선정하여 동일한 조건으로 공정적용을 실시하였고, 시멘트, 모프타르의 특성은 Lab test와 동일한 방법으로 실시하였으며, 콘크리트 특성은 표 6의 배합을 동일하게 적용하여 그 결과를 평가하였다.
4.3 실험결과 및 분석

(1) 시멘트의 특성

그림 8~9는 분쇄조제 종류별 사용량 및 생산량, 시멘트의 비교면적, 잔사량을 나타낸 것이다. 시멘트 생산량은 동일하게 유지하는데 사용되는 분쇄조제 사용량은 DEG, A社 제품, CG 순으로 높게 나타났다. 비교면적은 DEG, CG, A社 제품 순으로 높게 나타났고, 잔사량은 A社 제품, DEG, CG 순으로 낮게 나타났으나 전체적으로 큰 차이는 아닌 것으로 사료된다.

(2) 모르타르의 특성

그림 10~11은 분쇄조제 종류에 따른 모르타르의 폐조리 비 및 계량경과에 따른 압축강도를 나타낸 것이다. 폐조리 비는 A社 제품, DEG, CG 순으로 크게 나타났고, 압축강도는 분쇄조제 종류에 관계없이 KS L 5201규정을 상회하는 것으로 나타났다.

(3) 콘크리트의 특성

그림 12~13은 분쇄조제 종류에 따른 콘크리트의 습장도, 공기량 및 계량경과에 따른 압축강도를 나타낸 것이다. 습장도는 모르타르 실험과 동일한 결과를 보이는 것으로 나타났고, 공기량은 모두 목표치를 만족하는 것으로 나타났으며, 압축강도는 분쇄조제 종류에 관계없이 유사한 수준으로 발현되는 것으로 나타났다.
4.4 소결

CG를 분쇄조제로 사용한 경우에는 분쇄조제의 사용량이 DEG 대비 158%, A社 제품 대비 136% 증가하지만 생산량, 전사량, 압축강도 등의 특성은 DEG 및 A社 제품과 유사한 경향으로 나타나 분쇄조제로 적용이 가능할 것으로 사료된다.

5. 결 론

본 연구에서는 Lab 및 실험실에서 Crude glycerine을 분쇄조제로 사용한 시멘트 및 콘크리트의 기초적 특성을 분석한 것으로 그 결과를 요약하면 다음과 같다. CG를 분쇄조제로 사용한 경우에는 분쇄조제의 사용량이 증가하지만 생산량, 비표면적, 전사량, 유동성, 압축강도 등의 특성은 기존 분쇄조제와 유사한 경향으로 나타나 분쇄조제로 적용이 가능할 것으로 사료된다.