DOI QR코드

DOI QR Code

Computational modeling of the atmospheric boundary layer using various two-equation turbulence models

  • Juretic, Franjo (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb) ;
  • Kozmar, Hrvoje (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb)
  • Received : 2014.03.21
  • Accepted : 2014.11.10
  • Published : 2014.12.25

Abstract

The performance of the $k-{\varepsilon}$ and $k-{\omega}$ two-equation turbulence models was investigated in computational simulations of the neutrally stratified atmospheric boundary layer developing above various terrain types. This was achieved by using a proposed methodology that mimics the experimental setup in the boundary layer wind tunnel and accounts for a decrease in turbulence parameters with height, as observed in the atmosphere. An important feature of this approach is pressure regulation along the computational domain that is additionally supported by the nearly constant turbulent kinetic energy to Reynolds shear stress ratio at all heights. In addition to the mean velocity and turbulent kinetic energy commonly simulated in previous relevant studies, this approach focuses on the appropriate prediction of Reynolds shear stress as well. The computational results agree very well with experimental results. In particular, the difference between the calculated and measured mean velocity, turbulent kinetic energy and Reynolds shear stress profiles is less than ${\pm}10%$ in most parts of the computational domain.

Acknowledgement

Supported by : DAAD, HAZU, TUM

References

  1. Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007a), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
  2. Blocken, B., Carmeliet, J. and Stathopoulos, T. (2007b), "CFD evaluation of wind speed conditions in passages between parallel buildings - effect of wall-function roughness modifications for the atmospheric boundary layer flow", J. Wind Eng. Ind. Aerod., 95(9-11), 941-962. https://doi.org/10.1016/j.jweia.2007.01.013
  3. Boussinesq, J. (1877), "Essai sur la theorie des eaux courantes", Memoires presentes par divers savants al'Academie des Sciences XXIII, 1-680.
  4. Counihan, J. (1969a), "A method of simulating a neutral atmospheric boundary layer in a wind tunnel", AGARD Conference Proceedings 43.
  5. Counihan, J. (1969b), "An improved method of simulating an atmospheric boundary layer in a wind tunnel", Atmos. Environ., 3, 197-214. https://doi.org/10.1016/0004-6981(69)90008-0
  6. Counihan, J. (1973), "Simulation of an adiabatic urban boundary layer in a wind tunnel", Atmos. Environ., 7(7), 673-689. https://doi.org/10.1016/0004-6981(73)90150-9
  7. Duynkerke, P.G. (1988), "Application of the E-epsilon turbulence closure-model to the neutral and stable atmospheric Boundary Layer", J. Atmos. Sci., 45(5), 865-880. https://doi.org/10.1175/1520-0469(1988)045<0865:AOTTCM>2.0.CO;2
  8. ESDU 74031 (1974), "Characteristics of atmospheric turbulence near the ground. Part II: single point data for strong winds (neutral atmosphere)", Engineering Sciences Data Unit 74031.
  9. Franke, J., Hellsten, A., Schlunzen, H. and Carissimo, B.E. (2007), "Best practice guideline for the CFD simulation of flows in the urban environment", Cost action 732: quality assurance and improvement of microscale meteorological models.
  10. Garratt, J.R. (1992), The atmospheric boundary layer, Cambridge University Press, New York, NY, USA.
  11. Gorle, C., van Beeck, J., Rambaud, P. and Van Tendeloo, G. (2009), "CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer", Atmos. Environ., 43(3), 673-68. https://doi.org/10.1016/j.atmosenv.2008.09.060
  12. Hargreaves, D.M. and Wright, N.G. (2007), "On the use of the k-${\varepsilon}$ model in commercial CFD software to model the neutral atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 95(5), 355-369. https://doi.org/10.1016/j.jweia.2006.08.002
  13. Holmes, J.D. (2007), Wind loading of structures, 2nd Ed., Taylor & Francis, London, UK.
  14. Hu, P., Li, Y.L., Cai, C.S., Liao, H.L. and Xu, G.J. (2013), "Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-omega turbulence model", Wind Struct., 17(1), 87-105. https://doi.org/10.12989/was.2013.17.1.087
  15. Jasak, H. (1996), Error analysis and estimation in the finite volume method with application to fluid flows, Ph.D. Thesis, Imperial College, University of London, London, UK.
  16. Jasak, H., Weller, H. and Gosman, A. (1999), "High resolution NVD differencing scheme for arbitrarily unstructured meshes", Int. J. Numer. Meth. Fl., 31, 431-449. https://doi.org/10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
  17. Jones, W.P. and Launder B.E. (1972), "The prediction of laminarization with a two-equation model of turbulence", Int. J. Heat Mass Trans., 15(2), 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
  18. Juretic, F. (2004), Error analysis in finite volume CFD, Ph.D. Thesis, Imperial College, University of London, London, UK.
  19. Juretic, F. and Kozmar, H. (2013), "Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k-${\varepsilon}$ turbulence model", J. Wind Eng. Ind. Aerod., 115, 112-120. https://doi.org/10.1016/j.jweia.2013.01.011
  20. Kozmar, H. (2008), "Influence of spacing between buildings on wind characteristics above rural and suburban areas", Wind Struct., 11(5), 413-426. https://doi.org/10.12989/was.2008.11.5.413
  21. Kozmar, H. (2010), "Scale effects in wind tunnel modeling of an urban atmospheric boundary layer", Theor. Appl. Climatol., 100(1-2), 153-162. https://doi.org/10.1007/s00704-009-0156-3
  22. Kozmar, H. (2011a), "Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow", J. Wind Eng. Ind. Aerod., 99(2-3), 130-136. https://doi.org/10.1016/j.jweia.2010.11.001
  23. Kozmar, H. (2011b) "Characteristics of natural wind simulations in the TUM boundary layer wind tunnel", Theor. Appl. Climatol., 106(1-2), 95-104. https://doi.org/10.1007/s00704-011-0417-9
  24. Kozmar, H. (2011c), "Wind-tunnel simulations of the suburban ABL and comparison with international standards", Wind Struct., 14(1), 15-34. https://doi.org/10.12989/was.2011.14.1.015
  25. Kozmar, H. (2012a), "Improved experimental simulation of wind characteristics around tall buildings", J. Aerospace Eng., 25(4), 670-679. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000167
  26. Kozmar, H. (2012b), "Physical modeling of complex airflows developing above rural terrains", Environ. Fluid Mech., 12(3), 209-225. https://doi.org/10.1007/s10652-011-9224-1
  27. O'Sullivan, J.P., Archer, R.A. and Flay, R.G.J. (2011), "Consistent boundary conditions for flows within the atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 99(1), 65-77. https://doi.org/10.1016/j.jweia.2010.10.009
  28. Parente, A., Gorle, C., van Beeck, J. and Benocci, C. (2011a), "Improved k-${\varepsilon}$ model and wall function formulation for the RANS simulation of ABL flows", J. Wind Eng. Ind. Aerod., 99(4), 267-278. https://doi.org/10.1016/j.jweia.2010.12.017
  29. Parente, A., Gorle, C., van Beeck, J. and Benocci, C. (2011b), "A comprehensive modelling approach for the neutral atmospheric boundary layer: Consistent inflow conditions, wall function and turbulence model", Bound. - Lay. Meteorol., 140, 411-428. https://doi.org/10.1007/s10546-011-9621-5
  30. Patankar, S.V. and Spalding, D.B. (1972), "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows", Int. J. Heat Mass Trans., 15(10), 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
  31. Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge, UK.
  32. Revuz, J., Hargreaves, D.M. and Owen J.S. (2012), "On the domain size for the steady-state CFD modelling of a tall building", Wind Struct., 15(4), 313-329. https://doi.org/10.12989/was.2012.15.4.313
  33. Richards, P.J. and Hoxey, R.P. (1993), "Appropriate boundary conditions for computational wind engineering models using the k-${\varepsilon}$ turbulence model", J. Wind Eng. Ind. Aerod., 46-47, 145-153. https://doi.org/10.1016/0167-6105(93)90124-7
  34. Riddle, A., Carruthers, D., Sharpe, A., McHugh, C. and Stocker, J. (2004), "Comparisons between FLUENT and ADMS for atmospheric dispersion modeling", Atmos. Environ., 38(7), 1029-1038. https://doi.org/10.1016/j.atmosenv.2003.10.052
  35. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995), "A new k-${\epsilon}$ eddy viscosity model for high Reynolds number turbulent flows", Comput. Fluids, 24(3), 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
  36. Wilcox, D.C. (1988), "Reassessment of the scale-determining equation for advanced turbulence models", AIAA J., 26(11), 1299-1310. https://doi.org/10.2514/3.10041
  37. Yakhot, V. and Orszag, S.A. (1986), "Renormalization group analysis of turbulence, 1. Basic Theory", J. Sci. Comput., 1, 3-51. https://doi.org/10.1007/BF01061452
  38. Yang, Y., Gu, M., Chen, S. and Jin, X. (2009), "New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001
  39. Zhang, J., Yang, Q.S. and Li, Q.S. (2013), "Developments and applications of a modified wall function for boundary layer flow simulations", Wind Struct., 17(4), 361-377. https://doi.org/10.12989/was.2013.17.4.361

Cited by

  1. Steady RANS model of the homogeneous atmospheric boundary layer vol.173, 2018, https://doi.org/10.1016/j.jweia.2017.12.006