DOI QR코드

DOI QR Code

ON W4-BIRECURRENT MANIFOLDS

Kim, Jaeman

  • Received : 2014.07.29
  • Accepted : 2014.09.22
  • Published : 2014.12.25

Abstract

In the present paper, we introduce a type of Riemannian manifolds (namely, $W_4$-birecurrent manifold) and study the several properties of such a manifold on which some geometric conditions are imposed.

Keywords

$W_4$-birecurrent manifold;birecurrent manifold;associated tensor;scalar curvature;Einstein;concurrent vector field;parallel vector field

References

  1. Besse, A.L., Einstein Manifolds, Springer, Berlin, 1987.
  2. Chaki, M.C. and Roy Chowdhury, A.N., On conformally recurrent spaces of second order, J. Austral. Math. Soc. 10 (1969), 155-161. https://doi.org/10.1017/S1446788700006984
  3. Ewert-Krzemieniewski, S., On conformally birecurrent Ricci-recurrent manifolds, Colloq. Math. 62 (1991), 299-312. https://doi.org/10.4064/cm-62-2-299-312
  4. Ewert-Krzemieniewski, S., On manifolds with curvature condition of recurrent type of the second order, Period. Math. Hungar. 34 (1998), 185-194.
  5. Garai, R.K., On conharmonically recurrent spaces of second order, Yokohama Math. J. 21 (1973), 89-96.
  6. Leyson, D.T. and Lemence, R.S., On $W_4$-atness of some classes of generalizations of Einstein manifolds, Int. Journal of Math. Analysis 8 (2014), 881-889. https://doi.org/10.12988/ijma.2014.4240
  7. Lichnerowicz, A., Courbure, nombres de betti, et espaces symetrique, Proc. of the Intern. Cog. of Mat. 2 (1952), 216-223.
  8. Pokhariyal, G.P., Curvature tensors and their relativistic signi cance III, Yoko-hama Math. J. 21 (1973), 115-119.
  9. Thompson, A.H., On conformally flat 2-recurrent Riemannian spaces, Quart. J. Math. Oxford Ser. 20 (1969), 505-510. https://doi.org/10.1093/qmath/20.1.505
  10. Tripathi, M.M. and Gupta, P., $\Im$-curvature tensor on a semi-Riemannian man-ifold, J. Adv. Math. Stud. 4(1) (2011), 117-129.

Cited by

  1. ON PSEUDO W4-SYMMETRIC MANIFOLDS vol.38, pp.1, 2016, https://doi.org/10.5831/HMJ.2016.38.1.39

Acknowledgement

Supported by : Kangwon National University