• Kim, Jaeman (Department of Mathematics Education, Kangwon National University)
  • Received : 2014.07.29
  • Accepted : 2014.09.22
  • Published : 2014.12.25


In the present paper, we introduce a type of Riemannian manifolds (namely, $W_4$-birecurrent manifold) and study the several properties of such a manifold on which some geometric conditions are imposed.


Supported by : Kangwon National University


  1. Besse, A.L., Einstein Manifolds, Springer, Berlin, 1987.
  2. Chaki, M.C. and Roy Chowdhury, A.N., On conformally recurrent spaces of second order, J. Austral. Math. Soc. 10 (1969), 155-161.
  3. Ewert-Krzemieniewski, S., On conformally birecurrent Ricci-recurrent manifolds, Colloq. Math. 62 (1991), 299-312.
  4. Ewert-Krzemieniewski, S., On manifolds with curvature condition of recurrent type of the second order, Period. Math. Hungar. 34 (1998), 185-194.
  5. Garai, R.K., On conharmonically recurrent spaces of second order, Yokohama Math. J. 21 (1973), 89-96.
  6. Leyson, D.T. and Lemence, R.S., On $W_4$-atness of some classes of generalizations of Einstein manifolds, Int. Journal of Math. Analysis 8 (2014), 881-889.
  7. Lichnerowicz, A., Courbure, nombres de betti, et espaces symetrique, Proc. of the Intern. Cog. of Mat. 2 (1952), 216-223.
  8. Pokhariyal, G.P., Curvature tensors and their relativistic signi cance III, Yoko-hama Math. J. 21 (1973), 115-119.
  9. Thompson, A.H., On conformally flat 2-recurrent Riemannian spaces, Quart. J. Math. Oxford Ser. 20 (1969), 505-510.
  10. Tripathi, M.M. and Gupta, P., $\Im$-curvature tensor on a semi-Riemannian man-ifold, J. Adv. Math. Stud. 4(1) (2011), 117-129.

Cited by

  1. ON PSEUDO W4-SYMMETRIC MANIFOLDS vol.38, pp.1, 2016,