• Received : 2014.09.26
  • Accepted : 2014.11.10
  • Published : 2014.12.25


For unit tangent sphere bundles $T_1M$ with the standard contact metric structure (${\eta},\bar{g},{\phi},{\xi}$), we have two fundamental operators that is, $h=\frac{1}{2}{\pounds}_{\xi}{\phi}$ and ${\ell}=\bar{R}({\cdot},{\xi}){\xi}$, where ${\pounds}_{\xi}$ denotes Lie differentiation for the Reeb vector field ${\xi}$ and $\bar{R}$ denotes the Riemmannian curvature tensor of $T_1M$. In this paper, we study the Reeb ow invariancy of the corresponding (0, 2)-tensor fields H and L of h and ${\ell}$, respectively.


  1. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  2. D. E. Blair, When is the tangent sphere bundle locally symmetric?, Geometry and Topology, World Scientific, Singapore 509 (1989), 15-30.
  3. E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427-448.
  4. E. Boeckx, D. Perrone and L. Vanhecke, Unit tangent sphere bundles and twopoint homogeneous spaces, Periodica Math. Hungarica 36 (1998), 79-95.
  5. J. T. Cho and S. H. Chun, On the classi cation of contact Riemannian manifolds satisfying the condition (C), Glasgow Math. J. 45 (2003), 99-113.
  6. E. Boeckx, J. T. Cho and S. H. Chun, Flow-invariant structures on unit tangent bundles, Publ. Math. Debrecen 70 (2007), 167-178.
  7. P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88.
  8. A. Gray, Classification des varietes approximativement kahleriennes de courbure sectionelle holomorphe constante, J. Reine Angew. Math. 279 (1974), 797-800.
  9. O. Kowalski, Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.
  10. P. Gilkey, A. Swann and L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford 46 (1995), 299-320.
  11. Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J. 21 (1969), 117-143.
  12. L. Vanhecke and T. J. Willmore, Interactions of tubes and spheres, Math. Anal. 21 (1983), 31-42.
  13. K. Yano and S. Ishihara, Tangent and cotangent bundles, M. Dekker Inc. 1973.

Cited by

  1. Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator vol.6, pp.11, 2018,