DOI QR코드

DOI QR Code

Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique

  • Polyorach, S. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Wanapat, M. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Cherdthong, A. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
  • Received : 2013.05.27
  • Accepted : 2013.09.14
  • Published : 2014.01.01

Abstract

The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a $2{\times}5$ factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and $C_3$ while $C_2$, $C_2:C_3$ and $CH_4$ production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, $C_3$ and $NH_3$-N, but decreasing the $C_2$, $C_2:C_3$ and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F. succinogenes, R. flavefaciens, R. albus, methanogens and protozoal population were decreased (p<0.01) with decreasing R:C ratio. In conclusion, YEFECAP has a potential for use as a protein source for improving rumen fermentation efficiency in ruminants.

Keywords

Yeast Fermented Cassava Chip Protein (YEFECAP);R:C Ratio;Protein Source;Rumen Fermentation;In vitro Gas Production;Rice Straw

References

  1. McGinn, S. M., K. A. Beauchemin, T. Coates, and D. Colombatto. 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 82:3346-3356.
  2. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
  3. Moorby, J. M., R. J. Dewhurst, R. T. Evans, and J. L. Danelon. 2006. Effects of dairy cow diet forage proportion on duodenal nutrient supply and urinary purine derivative excretion. J. Dairy Sci. 89:3552-3562. https://doi.org/10.3168/jds.S0022-0302(06)72395-5
  4. Mosoni, P., F. Chaucheyras-Durand, C. Bera-Maillet, and E. Forano. 2007. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J. Appl. Microbiol. 103:2676-2685. https://doi.org/10.1111/j.1365-2672.2007.03517.x
  5. Moss, A. R., J. P. Jouany, and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. J. Ann. Zootech. 49:231-253. https://doi.org/10.1051/animres:2000119
  6. Oboh, G. 2006. Nutrient enrichment of cassava peels using a mixed culture of Sacchromyces cerevisiae and Lactobacillus spp. solid media fermentation technique. Electron. J. Biotechnol. 9:46-49. https://doi.org/10.2225/vol9-issue1-fulltext-1
  7. Oboh, G. and A. A. Akindahinsi. 2003. Biochemical changes in cassava products (flour & gari) subjected to Sacchromyces cerevisiae solid media fermentation. Food Chem. 82:599-602. https://doi.org/10.1016/S0308-8146(03)00016-5
  8. Oeztuerk, H. 2009. Effect of live and autoclaved yeast cultures on ruminal fermentation in vitro. J. Anim. Feed Sci. 18:142-150.
  9. Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
  10. Polyorach, S., M. Wanapat, and N. Sornsongnern. 2010. Effect of yeast fermented cassava chip protein (YEFECAP) in concentrate of lactating dairy cows. In: Proceedings of the 14th Animal Science Congress of the Asian-Australasian Association of Animal Production Societies (AAAP), vol. 3, August 23-26, 2010. National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China. pp. 304-307.
  11. Polyorach, S., M. WanPolyorach, S., M. Wanapat, and S. Wanapat. 2012. Increasing protein content of cassava (Manihot esculenta, Crantz) using yeast in fermentation. Khon Kaen Agr. J. 40 (Suppl 2):178-182.
  12. Polyorach, S., M. Wanapat, and S. Wanapat. 2013. Enrichment of protein content in cassava (Manihot esculenta Crantz) by supplementing with yeast for use as animal feed. Emirat. J. Food Agric. 25:142-149.
  13. Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat, and A. Cherdthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 63:389-400. https://doi.org/10.1080/17450390903020406
  14. Samuel, M., S. Sagathewan, J. Thomus, and G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of rumen fluid. Indian J. Anim. Sci. 67:805-807.
  15. Choi, Y. J., S. S. Lee, J. Y. Song, N. J. Choi, H. G. Sung, S. G. Yun, and J. K. Ha. 2003. Effects of dietary acidogenicity values on rumen fermentation characteristics and nutrients digestibility. Asian-Aust. J. Anim. Sci. 16:1625-1633. https://doi.org/10.5713/ajas.2003.1625
  16. Denman, S. E., N. Tomkins, and C. S. McSweeney. 2005. Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. In: 2nd International Symposium on Greenhouse Gases and Animal Agriculture (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). p. 112 ETH Zurich, Switzerland.
  17. Devendra, C. 1988. General approaches to animal nutrition research and their relevance to fish production in the Asian region. In: Finfish Nutrition Research in Asia (Ed. S. S. DeSilva). Heinemannn Asia Singapore, Singapore, pp. 7-24.
  18. Doto, S. P. and J. X. Liu. 2011. Effects of direct-fed microbials and their combinations with yeast culture on in vitro rumen fermentation characteristics. J. Anim. Feed Sci. 20:259-271.
  19. Galyean, M. 1989. Laboratory procedure in animal nutrition research. Department of Animal and Life Science. New Mexico State University, USA.
  20. Guglielmelli, A., S. Calabro, M. Cutrignelli, O. Gonzalez, F. Infascelli, R. Tudisco, and V. Piccolo. 2010. In vitro fermentation and methane production of fava and soy beans. EAAP Scientific Series 127:457-460.
  21. Hungate, R. E. 1966. The rumen and its microbes. Academic Press, New York, pp. 53.
  22. Iqbal, M. F., Y. F. Cheng, W. Y. Zhu, and B. Zeshan. 2008. Mitigation of ruminant methane production: current strategies, constraints and future options. World J. Microbiol. Biotechnol. 24:2747-2755. https://doi.org/10.1007/s11274-008-9819-y
  23. Jouany, J. P. 2006. Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Anim. Reprod. Sci. 96: 250-264. https://doi.org/10.1016/j.anireprosci.2006.08.005
  24. Koike, S. and Y. Kobayashi. 2001. Develop and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobactor succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  25. Lindberg, J. E. 1981. Rumen degradation pattem of dry matter and nitrogenous compounds of some concentrates studied with the nylon bag technique. Swedish J. Agric. Res. 11:171-176.
  26. Lovett, D. K., L. J. Stack, S. Lovell, J. Callan, B. Flynn, and M. Hawkins. 2005. Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. J. Dairy Sci. 88:2836-2842. https://doi.org/10.3168/jds.S0022-0302(05)72964-7
  27. Lusin, R. and M. Wanapat. 2010. Effect of roughage to concentrate ratio and rice bran oil supplementation on rumen fermentation characteristics using in vitro gas production technique. 14th AAAP Conference at Pingtung University, Taiwan. pp. 353-356.
  28. Lynch, H. A. and S. A. Martin. 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 85:2603-2608. https://doi.org/10.3168/jds.S0022-0302(02)74345-2
  29. Aluwong, T., P. A. Wuyep, and L. Allam. 2011. Livestock-environment interactions: Methane emissions from ruminants. Afr. J. Biotechnol. 10:1265-1269.
  30. Anantasook, N. and M. Wanapat. 2012. Influence of rain tree pod meal supplementation on rice straw based diets using in vitro gas fermentation technique. Asian-Aust. J. Anim. Sci. 25:325-334. https://doi.org/10.5713/ajas.2011.11131
  31. Aro, S. O. 2008. Improve in the nutritive quality of cassava and its by-products through microbial fermentation. Afr. J. Biotechnol. 7:4789-4797.
  32. Association of Official Analytical Chemists (AOAC). 1998. Official methods of analysis, vol. 2, $16^+$ edition. AOAC, Arlington, VA, USA.
  33. Bach, A., S. Calsamiglia, and M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88 (E. Suppl.): E9-E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7
  34. Beauchemin, K. A. and S. M. McGinn. 2005. Methane emissions from feedlot cattle fed barley or corn diets. J. Anim. Sci. 83:653-661.
  35. Boonnop, K., M. Wanapat, N. Nontaso, and S. Wanapat. 2009. Enriching nutritive value of cassava root by yeast fermentation. Sci. Agric. 66:629-633. https://doi.org/10.1590/S0103-90162009000500007
  36. Boonnop, K., M. Wanapat, and C. Navanukraw. 2010. Replacement of soybean meal by yeast fermented-cassava chip protein (YEFECAP) in concentrate diets fed on rumen fermentation, microbial population and nutrient digestibilities in ruminants. J. Anim. Vet. Adv. 9:1727-1734. https://doi.org/10.3923/javaa.2010.1727.1734
  37. Calabro, S., G. Moniello, V. Piccolo, F. Bovera, F. Infascelli, R. Tudisco, and M. I. Cutrignelli. 2008. Rumen fermentation and degradability in buffalo and cattle using the in vitro gas production technique. J. Anim. Physiol. Anim. Nutr. 92:356-362. https://doi.org/10.1111/j.1439-0396.2007.00799.x
  38. Callaway, E. S. and S. A. Martin. 1997. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. J. Dairy Sci. 80:2035-2044. https://doi.org/10.3168/jds.S0022-0302(97)76148-4
  39. Calsamiglia, S., P. W. Cardozo, A. Ferret, and A. Bach. 2008. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J. Anim. Sci. 86:702-711.
  40. Campanile, G., F. Zicarelli, D. Vecchio, C. Pacelli, G. Neglia, A. Balestrieri, R. Di Palo, and F. Infascelli. 2008. Effects of Saccharomyces cerevisiae on in vivo organic matter digestibility and milk yield in buffalo cows. Livest. Sci. 114:358-361. https://doi.org/10.1016/j.livsci.2007.11.002
  41. Chaucheyras, F., G. Fonty, G. Bertin, J. M. Salmon, and P. Gouet. 1996. Effects of a strain of Saccharomyces cerevisiae (Levu-cell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can. J. Microbiol. 42:927-933. https://doi.org/10.1139/m96-119
  42. Chaucheyras-Durand, F., N. D. Walker, and A. Bach. 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 145:5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
  43. Cherdthong, A., M. Wanapat, P. Kongmun, R. Pilajan, and P. Khejornsart. 2010. Rumen fermentation, Microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 9:1667-1675. https://doi.org/10.3923/javaa.2010.1667.1675
  44. Wanapat, M., S. Polyorach, V. Chanthakhoun, and N. Sornsongnern. 2011. Yeast-fermented cassava chip protein (YEFECAP) concentrate for lactating dairy cows fed on urea-lime treated rice straw. Livest. Sci. 139:258-263. https://doi.org/10.1016/j.livsci.2011.01.016
  45. Wora-anu, S., M. Wanapat, C. Wachirapakorn, and N. Nuntaso. 2000. Effects of roughage to concentrate ratio on ruminal ecology and voluntary feed intake in cattle and swamp buffaloes fed on urea- treated rice straw. Asian-Aust. J. Anim. Sci. 13(Suppl.):236-236.
  46. Wright, A. G., A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers, and K. D. Smith. 2004. Molecular diversity of rumen methanogens from sheep in western Australia. Appl. Environ. Microbiol. 70:1263-1270. https://doi.org/10.1128/AEM.70.3.1263-1270.2004
  47. Yan, T., R. E. Agnew, F. J. Gordon, and M. G. Porter. 2000. Prediction of methane energy output in dairy and beef cattle offered grass silage based diets. Livest. Prod. Sci. 64:253-263. https://doi.org/10.1016/S0301-6226(99)00145-1
  48. Yu, Z. and M. Morrison. 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Bio Techniques 36:808-812.
  49. Zicarelli, F., S. Calabro, M. I. Cutrignelli, F. Infascelli, R. Tudisco, F. Bovera, and V. Piccolo. 2011. In vitro fermentation characteristics of diets with different forage/concentrate ratios: Comparison of rumen and faecal inocula. J. Sci. Food Agric. 91:1213-1221. https://doi.org/10.1002/jsfa.4302
  50. Siddons, R. C. and J. Paradine. 1981. Effect of diet on protein degrading activity in sheep rumen. J. Sci. Food Agric. 32:973-981. https://doi.org/10.1002/jsfa.2740321005
  51. Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Anim. Sci. 43:910-929.
  52. Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics. McGraw Hill Book Co, New York, USA.
  53. Sutton, J. D., M. S. Dhanoa, S. V. Morant, J. France, D. J. Napper, and E. Schuller. 2003. Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. J. Dairy Sci. 86:3620-3633. https://doi.org/10.3168/jds.S0022-0302(03)73968-X
  54. Sylvester, J. T., S. K. R. Karnati, Y. Zhongtang, M. Morrison, and J. L. Firkins. 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 134:3378-3384.
  55. Tafaj, M., V. Kolaneci, B. Junck, A. Maulbetsch, H. Steingass, and W. Drochner. 2005. Influence of fiber content and concentrate level on chewing activity, ruminal digestion, digesta passage rate and nutrient digestibility in dairy cows in late lactation. Asian-Aust. J. Anim. Sci. 18:1116-1124. https://doi.org/10.5713/ajas.2005.1116
  56. Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassland Soc. 18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  57. Van Soest, P. J. 1982. Nutritional ecology of the ruminant. O & B Books Inc, Corvallis.
  58. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  59. Wanapat, M. 2003. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. Asian-Aust. J. Anim. Sci. 16:463-472. https://doi.org/10.5713/ajas.2003.463
  60. Wanapat, M. and S. Khampa. 2007. Effect of levels of supplementation of concentrate containing high levels of cassava chip on rumen ecology, microbial N supply and digestibility of nutrients in beef cattle. Asian-Aust. J. Anim. Sci. 20:75-81.
  61. Wanapat, M. and P. Rowlinson. 2007. Nutrition and feeding of swamp buffalo: feed resources and rumen approach. Ital. J. Anim. Sci. 6:67-73.
  62. Wanapat, M. and O. Pimpa. 1999. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Aust. J. Anim. Sci. 12:904-907. https://doi.org/10.5713/ajas.1999.904
  63. Wanapat, M., S. Polyorach, K. Boonnop, C. Mapato, and A. Cherdthong. 2009. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 125:238-243. https://doi.org/10.1016/j.livsci.2009.05.001
  64. SAS. 1998. User's Guide: Statistic, Version 6, 12th ed. SAS Inst. Inc., Cary, NC.
  65. Schoeman, E. A., P. J. De Wet, and W. Burger. 1972. The evaluation of the digestibility of treated proteins. Agroanilnalia 4:35.

Cited by

  1. Effects of Forage:Concentrate Ratio on Growth Performance, Ruminal Fermentation and Blood Metabolites in Housing-feeding Yaks vol.28, pp.12, 2015, https://doi.org/10.5713/ajas.15.0419
  2. Optimal Cultivation Time for Yeast and Lactic Acid Bacteria in Fermented Milk and Effects of Fermented Soybean Meal on Rumen Degradability Using Nylon Bag Technique vol.29, pp.9, 2015, https://doi.org/10.5713/ajas.15.0798
  3. Growth performance and carcass characteristics of feedlot Thai native × Lowline Angus crossbred steer fed with fermented cassava starch residue vol.48, pp.4, 2016, https://doi.org/10.1007/s11250-016-1011-z
  4. Effect of Fermentation Using Different Microorganisms on Nutritive Values of Fresh and Dry Cassava Root vol.13, pp.2, 2018, https://doi.org/10.3923/ajava.2018.128.135