DOI QR코드

DOI QR Code

Role of Wnt signaling in fracture healing

  • Xu, Huiyun ;
  • Duan, Jing ;
  • Ning, Dandan ;
  • Li, Jingbao ;
  • Liu, Ruofei ;
  • Yang, Ruixin ;
  • Jiang, Jean X. ;
  • Shang, Peng
  • Received : 2014.09.05
  • Accepted : 2014.09.29
  • Published : 2014.12.31

Abstract

The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-based therapeutic strategies for bone repair.

Keywords

Wnt signaling pathway;Fracture healing;${\beta}$-catenin;Sost;GSK-$3{\beta}$

References

  1. Nusslein-Volhard, C. and Wieschaus, E. (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795-801. https://doi.org/10.1038/287795a0
  2. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D. and Nusse, R. (1987) The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649-657. https://doi.org/10.1016/0092-8674(87)90038-9
  3. Nusse, R. and Varmus, H. (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 31, 2670-2684. https://doi.org/10.1038/emboj.2012.146
  4. Regard, J. B., Zhong, Z., Williams, B. O. and Yang, Y. (2012) Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb. Perspect. Biol. 4, a007997.
  5. Chen, Y. and Alman, B. A. (2009) Wnt pathway, an essential role in bone regeneration. J. Cell. Biochem. 106, 353-362. https://doi.org/10.1002/jcb.22020
  6. Bruder, S. P., Fink, D. J. and Caplan, A. I. (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regenaration therapy. J. Cell. Biochem. 56, 283-294.
  7. Silkstone, D., Hong, H. and Alman, B. A. (2008) ${\beta}$-Catenin in the race to fracture repair: in it to Wnt. Nat. Clin. Pract. Rheumatol. 4, 413-419. https://doi.org/10.1038/ncprheum0838
  8. Einhorn, T. A. (2010) The Wnt signaling pathway as a potential target for therapies to enhance bone repair. Sci. Transl. Med. 2, 42ps36.
  9. Tzioupis, C. and Giannoudis, P. V. (2007) Prevalence of long-bone non-unions. Injury 38, S3-S9.
  10. Hak, D. J., Fitzpatrick, D., Bishop, J. A., Marshd, J. L., Tilpe, S., Schnettlere, R., Simpsonf, H. and Alte, V. (2014) Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 45, S3-S7.
  11. Bhanot, P., Brink, M., Samos, C. H., Hsieh, J. C., Wang, Y., Macke, J. P., Andrew, D., Nathans, J. and Nusse, R. (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225-230. https://doi.org/10.1038/382225a0
  12. He, X., Semenov, M., Tamai, K. and Zeng, X. (2004) LDL receptor-related proteins 5 and 6 in Wnt/${\beta}$-catenin signaling: arrows point the way. Development 131, 1663-1677. https://doi.org/10.1242/dev.01117
  13. Eastman, Q. and Grosschedl, R. (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr. Opin. Cell Biol. 11, 233-240. https://doi.org/10.1016/S0955-0674(99)80031-3
  14. Slusarski, D. C., Corces, V. G. and Moon, R. T. (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410-413. https://doi.org/10.1038/37138
  15. Nusse, R. (1999) WNT targets: repression and activation. Trends Genet. 15, 1-3. https://doi.org/10.1016/S0168-9525(98)01634-5
  16. De, A. (2011) Wnt/$Ca^{2+}$ signaling pathway: a brief overview. Acta Biochim. Biophys. Sin. 43, 745-756. https://doi.org/10.1093/abbs/gmr079
  17. Kuhl, M. (2004) The WNT/calcium pathway: biochemical mediators, tools and future requirements. Front. Biosci. 9, 967-974. https://doi.org/10.2741/1307
  18. Nakamura, R. E. I. and Hackam, A. S. (2010) Analysis of Dickkopf3 interactions with Wnt signaling receptors. Growth Factors 28, 232-242. https://doi.org/10.3109/08977191003738832
  19. Hoeppner, L. H., Secreto, F. J. and Westendorf, J. J. (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin. Ther. Targets 13, 485-496. https://doi.org/10.1517/14728220902841961
  20. Patthy, L. (2000) The WIF module. Trends Biochem. Sci. 25, 12-13. https://doi.org/10.1016/S0968-0004(99)01504-2
  21. Einhorn, T. A. (1998) The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355, S7-S21.
  22. Marsell, R. and Einhorn, T. A. (2011) The biology of fracture healing. Injury 42, 551-555. https://doi.org/10.1016/j.injury.2011.03.031
  23. Schindeler, A., McDonald, M. M., Bokko, P. and Little, D. G. (2008) Bone remodeling during fracture repair: The cellular picture. Semin. Cell Dev. Biol. 19, 459-466. https://doi.org/10.1016/j.semcdb.2008.07.004
  24. Phillips, A. M. (2005) Overview of the fracture healing cascade. Injury 36, S5-S7. https://doi.org/10.1016/j.injury.2005.07.027
  25. Chen, Y., Whetstone, H. C., Lin, A. C., Nadesan, P., Wei, Q., Poon, R. and Alman, B. A. (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 4, e249. https://doi.org/10.1371/journal.pmed.0040249
  26. Hadjiargyrou, M., Lombardo, F., Zhao, S., Ahrens, W., Joo, J., Ahn, H., Jurman, M., White, D. W. and Rubin, C. T. (2002) Transcriptional profiling of bone regeneration Insight into the molecular complexity of wound repair. J. Biol. Chem. 277, 30177-30182. https://doi.org/10.1074/jbc.M203171200
  27. Zhong, N., Gersch, R. P. and Hadjiargyrou, M. (2006) Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone 39, 5-16. https://doi.org/10.1016/j.bone.2005.12.008
  28. Leucht, P., Kim, J. B. and Helms, J. A. (2008) Beta-catenin-dependent Wnt signaling in mandibular bone regeneration. J. Bone Joint. Surg. 90, 3-8.
  29. Macsai, C. E., Georgiou, K. R., Foster, B. K., Zannettino, A. C. W. and Xian, C. J. (2012) Microarray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony repair. Bone 50, 1081-1091. https://doi.org/10.1016/j.bone.2012.02.013
  30. Kakar, S., Einhorn, T. A., Vora, S., Miara, L. J., Hon, G., Wigner, N. A., Toben, D., Jacobsen, K. A., Al-Sebaei, M. O., Song, M., Trackman, P. C., Morgan, E. F., Gerstenfeld, L. and Barnes, G. L. (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J. Bone Miner. Res. 22, 1903-1912. https://doi.org/10.1359/jbmr.070724
  31. Kim, J. B., Leucht, P., Lam, K., Luppen, C., Ten Berge, D., Nusse, R. and Helms, J. A. (2007) Bone regeneration is regulated by wnt signaling. J. Bone Miner. Res. 22, 1913-1923. https://doi.org/10.1359/jbmr.070802
  32. Bollerslev, J., Wilson, S. G., Dick, I. M., Dick, I. M., Islam, F. M. A., Ueland, T., Palmer, L., Devine, A., Prince, R. L. (2005) LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 36, 599-606. https://doi.org/10.1016/j.bone.2005.01.006
  33. van Meurs, J. B. J., Rivadeneira, F., Jhamai, M., Hugens, W., Hofman, A., van Leeuwen, J. P., Pols, H. A. and Uitterlinden, A. G. (2006) Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men. J. Bone Miner. Res. 21, 141-150.
  34. Komatsu, D. E., Mary, M. N., Schroeder, R. J., Robling, A. G., Turner, C. H. and Warden, S. J. (2010) Modulation of Wnt signaling influences fracture repair. J. Orthop. Res. 28, 928-936.
  35. Phiel, C. J. and Klein, P. S. (2001) Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789-813. https://doi.org/10.1146/annurev.pharmtox.41.1.789
  36. Lauing, K. L., Sundaramurthy, S., Nauer, R. K. and Callaci, J. J. (2014) Exogenous activation of Wnt/${\beta}$-Catenin signaling attenuates binge alcohol-induced deficient bone fracture healing. Alcohol. Alcohol. 9, 399-408.
  37. Vestergaard, P., Rejnmark, L. and Mosekilde, L. (2005) Reduced relative risk of fractures among users of lithium. Calcif. Tissue Int. 77, 1-8. https://doi.org/10.1007/s00223-004-0258-y
  38. Sisask, G., Marsell, R., Sundgren-Andersson, A., Larsson, S., Nilsson, O., Ljunggren, O. and Jonsson, K. B. (2013) Rats treated with AZD2858, a GSK3 inhibitor, heal fractures rapidly without endochondral bone formation. Bone 54, 126-132. https://doi.org/10.1016/j.bone.2013.01.019
  39. Kawano, Y. and Kypta, R. (2003) Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627-2634. https://doi.org/10.1242/jcs.00623
  40. Bodine, P. V. N., Zhao, W., Kharode, Y. P., Bex, F. J., Lambert, A. J., Goad, M. B., Gaur, T., Stein, G. S., Lian, J. B., and Komm, B. S. (2004) The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18, 1222-1237. https://doi.org/10.1210/me.2003-0498
  41. Gaur, T., Wixted, J. J., Hussain, S., O'Connell, S. L., Morgan, E. F., Ayers, D. C., Komm, B. S., Bodine, P. V., Stein, G. S. and Lian, J. B. (2009) Secreted frizzled related protein 1 is a target to improve fracture healing. J. Cell. Physiol. 220, 174-181. https://doi.org/10.1002/jcp.21747
  42. Semenov, M., Tamai, K. and He, X. (2005) Sost is a ligand for lrp5/lrp6 and a wnt signaling inhibitor. J. Biol. Chem. 280, 26770-26775. https://doi.org/10.1074/jbc.M504308200
  43. Li, X., Ominsky, M. S., Niu, Q. T., Sun, N., Daugherty, B., D'Agostin, D., Kurahara, C., Gao, Y., Cao, J., Gong, J., Asuncion, F., Barrero, M., Warmington, K., Dwyer, D., Stolina, M., Morony, S., Sarosi, I., Kostenuik, P. J., Lacey, D. L., Simonet, W. S., Ke, H. Z. and Paszty, C. (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23, 860-869. https://doi.org/10.1359/jbmr.080216
  44. McGee-Lawrence, M. E., Ryan, Z. C., Carpio, L. R., Kakar, S., Westendorf, J. J. and Kumar, R. (2013) Sclerostin deficient mice rapidly heal bone defects by activating ${\beta}$-catenin and increasing intramembranous ossification. Biochem. Biophys. Res. Commun. 441, 886-890. https://doi.org/10.1016/j.bbrc.2013.10.155
  45. Li, C., Ominsky, M. S., Tan, H. L., Barrero, M., Niu, Q. T., Asuncion, F. J., Lee, E., Liu, M., Simonet, W. S., Paszty, C. and Ke, H. Z. (2011) Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene. Bone 49, 1178-1185. https://doi.org/10.1016/j.bone.2011.08.012
  46. Sarahrudi, K., Thomas, A., Albrecht, C. and Aharinejad, S. (2012) Strongly enhanced levels of sclerostin during human fracture healing. J. Orthop. Res. 30, 1549-1555. https://doi.org/10.1002/jor.22129
  47. Ominsky, M. S., Li, C., Li, X., Tan, H. L., Lee, E., Barrero, M., Asuncion, F. J., Dwyer, D., Han, C. Y., Vlasseros, F., Samadfam, R., Jolette, J., Smith, S. Y., Stolina, M., Lacey, D. L., Simonet, W. S., Paszty, C., Li, G. and Ke, H. Z. (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J. Bone Miner. Res. 26, 1012-1021. https://doi.org/10.1002/jbmr.307
  48. Virk, M. S., Alaee, F., Tang, H., Ominsky, M. S., Ke, H. Z. and Lieberman, J. R. (2013) Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J. Bone Joint. Surg. 95, 694-701. https://doi.org/10.2106/JBJS.L.00285
  49. Gamie, Z., Korres, N., Leonidou, A., Gray, A. C. and Tsiridis, E. (2012) Sclerostin monoclonal antibodies on bone metabolism and fracture healing. Exper. Opin. Inv. Drug 21, 1523-1534. https://doi.org/10.1517/13543784.2012.713936
  50. Jawad, M. U., Fritton, K. E., Ma, T., Ren, P. G., Goodman, S. B., Ke, H. Z., Babij, P. and Genovese, M. C. (2013) Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J. Orthop. Res. 31, 155-163. https://doi.org/10.1002/jor.22186
  51. Suen, P. K., He, Y. X., Chow, D. H. K., Huang, L., Li, C., Ke, H. Z., Ominsky, M. S. and Qin, L. (2014) Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J. Orthop. Res. 32, 997-1005. https://doi.org/10.1002/jor.22636
  52. Agholme, F., Li, X., Isaksson, H., Ke, H. Z. and Aspenberg, P. (2010) Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J. Bone Miner. Res. 25, 2412-2418. https://doi.org/10.1002/jbmr.135
  53. Alaee, F., Virk, M. S., Tang. H., Sugiyama, O., Adams, D. J., Stolina, M., Dwyer, D., Ominsky, M. S., Ke, H. Z. and Lieberman, J. R. (2014) Evaluation of the effects of systemic treatment with a sclerostin neutralizing antibody on bone repair in a rat femoral defect model. J. Orthop. Res. 32, 197-203. https://doi.org/10.1002/jor.22498
  54. Glinka, A., Wu, W., Delius, H., Monaghan, A. P., Blumenstock, C. and Niehrs, C. (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357-362. https://doi.org/10.1038/34848
  55. Morvan, F., Boulukos, K., Clement-Lacroix, P., Roman, S. R., Suc-Royer, I., Vayssiere, B., Ammann, P., Martin, P., Pinho, S., Pognonec, P., Mollat, P., Niehrs, C., Baron, R. and Rawadi, G. (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934-945. https://doi.org/10.1359/jbmr.060311
  56. Li, X., Grisanti, M., Fan, W., Asuncion, F. J., Tan, H. L., Dwyer, D., Han, C. Y., Yu, L., Lee, J., Lee, E., Barrero, M., Kurimoto, P., Niu, Q. T., Geng, Z., Winters, A., Horan, T., Steavenson, S., Jacobsen, F., Chen, Q., Haldankar, R., Lavallee, J., Tipton, B., Daris, M., Sheng, J., Lu, H. S., Daris, K., Deshpande, R., Valente, E. G., Salimi-Moosavi, H., Kostenuik, P. J., Li, J., Liu, M., Li, C., Lacey, D. L., Simonet, W. S., Ke, H. Z., Babij, P., Stolina, M., Ominsky, M. S., Richards, W. G. (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J. Bone Miner. Res. 26, 2610-2621. https://doi.org/10.1002/jbmr.472
  57. Loiselle, A. E., Lloyd, S. A. J., Paul, E. M., Lewis, G. S. and Donahue, H. J. (2013) Inhibition of GSK-3${\beta}$ rescues the impairments in bone formation and mechanical properties associated with fracture healing in osteoblast selective connexin 43 deficient mice. PloS one 8, e81399. https://doi.org/10.1371/journal.pone.0081399
  58. Loiselle, A. E., Paul, E. M., Lewis, G. S. and Donahue, H. J. (2013) Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J. Orthop. Res. 31, 147-154. https://doi.org/10.1002/jor.22178
  59. Aspenberg, P. (2013) Annotation: Parathyroid hormone and fracture healing. Acta. Orthop. 84, 4-6. https://doi.org/10.3109/17453674.2013.771301
  60. Bodine, P. V. N., Seestaller-Wehr, L., Kharode, Y. P., Bex, F. G. and Komm, B. S. (2007) Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J. Cell. Physiol. 210, 352-357. https://doi.org/10.1002/jcp.20834
  61. Ronga, M., Fagetti, A., Canton, G., Paiusco, E., Surace, M. F. and Cherubino, P. (2013) Clinical applications of growth factors in bone injuries: experience with BMPs. Injury 44, S34-S39.
  62. Bostrom, M. P., Lane, J. M., Berberian, W. S., Missri, A. A., Tomin, E., Weiland, A., Doty, S. B., Glaser, D. and Rosen, V. M. (1995) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J. Orthop. Res. 13, 357-367. https://doi.org/10.1002/jor.1100130309
  63. Fourman, M. S., Borst, E. W., Bogner, E., Rozbruch, R. and Fragomen, A. T. (2014) Recombinant human BMP-2 increases the incidence and rate of healing in complex ankle arthrodesis. Clin. Orthop. Relat. Res. 472, 732-739. https://doi.org/10.1007/s11999-013-3261-7
  64. Lissenberg-Thunnissen, S. N., de Gorter, D. J., Sier, C. F. and Schipper, I. B. (2011) Use and efficacy of bone morphogenetic proteins in fracture healing. Int. Orthop. 35, 1271-1280. https://doi.org/10.1007/s00264-011-1301-z
  65. Mbalaviele, G., Sheikh, S., Stains, J. P., Salazar, V. S., Cheng, S., Chen, D. and Civitelli, R. (2005) ${\beta}$-Catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J. Cell. Biochem. 94, 403-418. https://doi.org/10.1002/jcb.20253
  66. Chen, Y., Whetstone, H. C., Youn, A., Nadesan, P., Chow, E. C. Y., Lin, A. C. and Alman, B. A. (2007) ${\beta}$-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J. Biol. Chem. 282, 526-533. https://doi.org/10.1074/jbc.M602700200
  67. Fischer, L., Boland, G. and Tuan, R. S. (2002) Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J. Cell. Biochem. 84, 816-831. https://doi.org/10.1002/jcb.10091
  68. Lowik, C. and Van Bezooijen, R. L. (2006) Wnt signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Musculoskelet. Neuronal. Interact. 6, 357.
  69. van Bezooijen, R. L., Svensson, J. P., Eefting, D., Visser, A., van der Horst, G., Karperien, M., Quax, P. H., Vrieling, H., Papapoulos, S. E., ten Dijke, P. and Lowik, C. W. (2007) Wnt but Not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Bone Miner. Res. 22, 19-28.
  70. Yu, Y.Y., Lieu, S., Miclau, T., Colnot, C. and Marcucio, R. (2011) Effects of bone morphogenetic proteins on tgf-beta, wnt and bmp pathways during tibial fracture repair. FASEB J. 25 (Meeting Abstract Supplement), 680.

Cited by

  1. Increased Runx2 expression associated with enhanced Wnt signaling in PDLLA internal fixation for fracture treatment vol.13, pp.5, 2017, https://doi.org/10.3892/etm.2017.4216
  2. High Plasma Concentrations of Sclerostin, an Inhibitor of the Wnt Signaling Pathway, in Young Horses Affected by Osteochondrosis vol.04, pp.12, 2014, https://doi.org/10.4236/ojo.2014.412051
  3. CKIP-1 silencing promotes new bone formation in rat mandibular distraction osteogenesis vol.123, pp.1, 2017, https://doi.org/10.1016/j.oooo.2016.07.013
  4. Local and targeted drug delivery for bone regeneration vol.40, 2016, https://doi.org/10.1016/j.copbio.2016.02.029
  5. The role of CKIP-1 in osteoporosis development and treatment vol.7, pp.2, 2018, https://doi.org/10.1302/2046-3758.72.BJR-2017-0172.R1
  6. Cortistatin inhibits arterial calcification in rats via GSK3β/β-catenin and protein kinase C signalling but not c-Jun N-terminal kinase signalling vol.223, pp.3, 2018, https://doi.org/10.1111/apha.13055
  7. Wnt Pathway in Bone Repair and Regeneration – What Do We Know So Far vol.6, pp.2296-634X, 2019, https://doi.org/10.3389/fcell.2018.00170

Acknowledgement

Supported by : Welch Foundation