Inhibition of Melanogenesis by Cucurbitacin B from Cucumis sativus L.

오이로부터 분리된 cucurbitacin B의 미백 효능 연구

  • Chang, Yun-Hee (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.) ;
  • Choo, Jung-Ha (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.) ;
  • Lee, So-Young (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.) ;
  • Kim, Tae-Yoon (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.) ;
  • Jin, Mu-Hyun (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.) ;
  • Chang, Min-Youl (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.) ;
  • Lee, Sang-Hwa (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.) ;
  • Lee, Cheon-Koo (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.) ;
  • Park, Sun-Gyoo (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.)
  • 장윤희 (LG 생활건강 기술연구원 화장품 연구소) ;
  • 추정하 (LG 생활건강 기술연구원 화장품 연구소) ;
  • 이소영 (LG 생활건강 기술연구원 화장품 연구소) ;
  • 김태윤 (LG 생활건강 기술연구원 화장품 연구소) ;
  • 진무현 (LG 생활건강 기술연구원 화장품 연구소) ;
  • 장민열 (LG 생활건강 기술연구원 화장품 연구소) ;
  • 이상화 (LG 생활건강 기술연구원 화장품 연구소) ;
  • 이천구 (LG 생활건강 기술연구원 화장품 연구소) ;
  • 박선규 (LG 생활건강 기술연구원 화장품 연구소)
  • Received : 2014.11.09
  • Accepted : 2014.12.09
  • Published : 2014.12.31


To develop an effective skin whitening agent for cosmetics, we isolated cucurbitacin B from Cucumis sativus L. which has been used as traditional skin lighting regimen by the bioactivity-guided fractionation, and investigated the inhibitory effects of cucurbitacin B on melanogenesis. At a non-cytotoxic concentration, cucurbitacin B reduced melanin contents of B16F1 melanoma cells in a dose-dependent manner. Cucurbitacin B did not directly inhibit mushroom tyrosinase activity, but it inhibited intracellular tyrosinase activity in a dose-dependent manner. Its inhibitory mechanism on melanin biosynthesis was further assessed, and we found that cucurbitacin B significantly decreased the protein level of tyrosinase, a major melanogenic enzymes and MITF, a master transcriptional factor of melanogenesis. In addition, cucurbitacin B increased the expression of WW domain-containing oxidoreductase (WWOX) which is known to function as tumor repressor and inhibits $Wnt/{\beta}$-catenin pathway. Collectively, these results suggest that cucuritacin B from C. sativus could be used as an active ingredient for skin whitening.


cucurbitacin B;melanogenesis;tyrosinase;mitf;wwox


Supported by : 보건복지부


  1. E. T. Jeong, M. H. Jin, M. S. Kim, Y. H. Chang, and S. G. Park, Inhibition of Melanogenesis by Piceid Isolated from cuspidatum, Arch. Pharm. Res., 33(9), 1331 (2010).
  2. B. A. Gilchrest and M. S. Eller, DNA photodamage stimulates melanogenesis and other photoprotective responses, J. Investig. Dermatol. Symp. Proc., 4(1), 35 (1999).
  3. S. C. Taylor, Skin of color : biology, structure, function, and implications for dermatologic disease, Am. Acad. Dermatol., 46(2), S41 (2002).
  4. U. Leiter and C. Garbe, Epidemiology of melanoma and nonmelanoma skin cancer-The role of sunlight, Adv. Exp. Med. Biol., 624, 89 (2008).
  5. V. J. Hearing and M. Jimenez, Mammalian tyrosinase-The critical regulatory control point in melanocyte pigmentation, Int. J. Biochem., 19(12), 1141 (1987).
  6. T. Kuzumaki, A. Matsuda, K. Wakamatsu, S. Ito, and K. Ishikawa, Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase- related protein-1 genes, Exp. Cell Res., 207(1), 33 (1993).
  7. V. del Marmol and F. Beermann, Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 381(3), 165 (1996).
  8. J. Y. Lin and D. E. Fisher, Melanocyte biology and skin pigmentation, Nature, 445(7130), 843 (2007).
  9. S. Briganti, E. Camera, and M. Picardo, Chemical and instrumental approaches to treat hyperpigmentation, Pigment. Cell Res., 16(2), 101 (2003).
  10. F. Solano, S. Briganti, M. Picardo, and G. Ghanem, Hypopigmenting agents: an updated review on biological, chemical and clinical aspects, Pigment. Cell Res., 19(6), 550 (2006).
  11. R. I. Aqeilan, F. Trapasso, S. Hussain, S. Costinean, D. Marshall, and Y. Pekarsky. Targeted deletion of Wwox reveals a tumor suppressor function, Proc. Natl. Acad. Sci. USA, 104(10), 3949 (2007).
  12. F. J. Lai, C. L. Cheng, S. T. Chen, C. H. Wu, L. J. Hsu, J. Y. Lee, S. C. Chao, M. C. Sheen, C. L. Shen, N. S. Chang, and H. M. Sheu, WOX1 is essential for UVB irradiation-induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo, Clin. Cancer Res., 11(16), 5769 (2005).
  13. N. Bouteille, K. Driouch, P. E. Hage, S. Sin, E. Formstecher, J. Camonis, R. Lidereau, and F. Lallemand, Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein, Oncogene, 28(28), 2569 (2009).
  14. K. H. Bae, The medicinal plants of Korea, 345, Kyo-Hak Sa, Seoul (2000).
  15. G. Patri, V. Silano, and R. Anton, Plants in cosmetics. Council of Europe Publishing, Strasbourg (2002).
  16. H. N. Won, Tukhyo myobang chonso, 9, 33, 82, 85, Hakminsa, Seoul (1994).
  17. N. K. Nema, N. Maity, B. Sarkar, and P. K. Mukherjee, Cucumis sativus fruit-potential anti-oxidant, anti-hyaluronidase, and anti-elastase agent, Arch. Dermatol. Res., 303(4), 247 (2011).
  18. N. Kamkaen, N. Mulsri, and C. Treesak, Screening of some tropical vegetables for anti-tyrosinase activity, Thai Pharm. Health Sci. J., 2(1), 15 (2007).
  19. P. R. Enslin, J. M. Hugo, K. B. Norton, and D. E. A. Rivertt, Bitter principles of the cucurbitaceae. Part X. Cucurbitacin C, J. Chem. Soc., 4787 (1960).
  20. C. A. Rice, K. S. Rymal, O. L. Chambliss, and F. A. Johnson, Chromatographic and mass spectral analysis of cucurbitacins of three Cucumis sativus cultivars, J. Agric. Food Chem., 29(1), 194 (1981).
  21. E. Yesilada, S. Tanaka, E. Sezik, and M. Tabata, Isolation of an anti-inflammatory principle from the fruit juice of Ecballium elaterium, J. Nat. Prod., 51(3), 504 (1988).
  22. S. H. Choi, S. Y. Lee, and T. S. Cho, Effects of the constituents of melonis pedicellus in the animal models of hepatic diseases, Yakhak Hoeji, 44(1), 87 (2000).
  23. J. Hosoi, E. Abe, T. Suda, and T. Kuroki, Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid, Cancer Res., 45(4), 1474 (1985).
  24. S. H. Pomerantz, Tyrosine hydroxylation catalyzed by mammalian tyrosinase: An improved method of assay, Biochem. Biophys. Res. Commun., 16(2), 188 (1964).
  25. P. L. Wu, F. W. Lin, T. S. Wu, C. S. Kuoh, K. H. Lee, and S. J. Lee, Cytotoxic and anti-HIV principles from the rhizomes of Begonia nantoensis, Chem. Pharm. Bull., 52(3), 345 (2004).
  26. Y. Yamaguchi and V. J. Hearing, Physiological factors that regulated skin pigmentation, Biofactors., 35(2), 193 (2009).
  27. I. Aksan and C. R. Goding, Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo, Mol. Cell Biol., 18(12), 6930 (1998).
  28. M Tachibana, MITF : a stream flowing for pigment cells. Pigment Cell, 13(4), 230 (2000).

Cited by

  1. Anti-Inflammatory and Whitening Effect of the Lyophilized Powder of Oriental Plant Extracts Fermented with Streptococcus thermophilus vol.41, pp.2, 2015,