A Comparison Study of Bayesian Methods for a Threshold Autoregressive Model with Regime-Switching

국면전환 임계 자기회귀 분석을 위한 베이지안 방법 비교연구

Roh, Taeyoung;Jo, Seongil;Lee, Ryounghwa

  • Received : 2014.10.02
  • Accepted : 2014.11.11
  • Published : 2014.12.31


Autoregressive models are used to analyze an univariate time series data; however, these methods can be inappropriate when a structural break appears in a time series since they assume that a trend is consistent. Threshold autoregressive models (popular regime-switching models) have been proposed to address this problem. Recently, the models have been extended to two regime-switching models with delay parameter. We discuss two regime-switching threshold autoregressive models from a Bayesian point of view. For a Bayesian analysis, we consider a parametric threshold autoregressive model and a nonparametric threshold autoregressive model using Dirichlet process prior. The posterior distributions are derived and the posterior inferences is performed via Markov chain Monte Carlo method and based on two Bayesian threshold autoregressive models. We present a simulation study to compare the performance of the models. We also apply models to gross domestic product data of U.S.A and South Korea.


GDP;threshold autoregressive model;parametric Bayesian method;nonparametric Bayesian method;Dirichlet process prior


  1. De I, M., Johnson, W. O., Muller, P. and Rosner, G. L. (2009). Bayesian nonparametric nonproportional hazards survival modeling, Biometrics, 65, 762-771.
  2. Barrientos, A. F., Jara, A. and Quintana, F. A. (2012). On the support of MacEachern's dependent Dirichlet processes and extensions, Bayesian Analysis, 7, 277-309.
  3. Burns, A. and Mitchell, W. (1946). Measuring Business Cycles, New York: NBER.
  4. Chen, C. W. S. and Lee, J. C. (1995). Bayesian inference of threshold autoregressive models, J. Time Ser. Anal., 16, 483-492.
  5. Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions, Econometrica, 28, 591-605.
  6. Di Lucca, M, A., Guglielmi, A., Muller, P. and Quintana, F. A. (2013). A Simple class of Bayesian nonparametric autoregression models, Bayesian Analysis, 8, 63-88.
  7. Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems, Annals of Statistics, 1, 209-230.
  8. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2014). Bayesian Data Analysis, Third Edition, CRC press, New York.
  9. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
  10. Geweke, J. F. and Terui, N. (1993). Bayesian threshold autoregressive models for nonlinear time series, Journal of Time Series Analysis, 14, 441-454.
  11. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57, 357-384.
  12. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109.
  13. Hjort, N. L., Holmes, C., Muller, P. and Walker, S. G. (2010). Bayesian nonparametrics, Cambridge University Press, New York.
  14. Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors, Journal of the American Statistical Association, 96, 161-173.
  15. Koop, G., Pesaran, M. H. and Potter, S. (1996). Impulse response analysis in nonlinear multivariate models, Journal of Econometrics, 74, 119-147.
  16. Koop, G. and Potter, S. M. (1999). Dynamic asymmetries in US unemployment, Journal of Business and Economic Statistics, 17, 298-312.
  17. Koop, G., Poirier, D. J. and Tobias, J. L. (2007). Bayesian Econometric Methods, Cambridge University Press, New York.
  18. Lee, R. H., Choi, T. R., No, T. Y. and Jo, S. I. (2014). Regime switching research of GDP for Korea and the United States using Baysian analysis, Proceeding of Korean Data Analysis Society, April 25-26, 221-226.
  19. MacEachern, S. N. (1999). Dependent nonparametric process, In Proceedings of the American Statistical Association, Section on Bayesian Statistical Science, 50-55.
  20. MacEachern, S. N. (2000). Dependent Dirichlet processes, Technical Paper, Department of Statistics, Ohio State University.
  21. Potter, S. M. (1995). A nonlinear approach to US GNP, Journal of Applied Econometrics, 10, 109-126.
  22. McCulloch, R. E. and Tsay, R. S. (1993a). Bayesian Analysis of Threshold Autoregressive Processes with a Random Number of Regimes, Computing Science and Statistics Proc. 25th Symp. Interface. Fairfax Station, VA: Interface Foundation of North America, 253-262.
  23. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21, 1087-1092.
  24. Muller, P. and Rodrguez, A. (2013). Nonparametric Bayesian inference, NSF-CBMS Regional Conference Series in Probability and Statistics, Volume 9, USA.
  25. Rodrguez, A. and ter Horst, E. (2008). Bayesian dynamic density estimation, Bayesian Analysis, 3, 339-365.
  26. Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables, Econometrica, 26, 397-415.
  27. Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4, 639-650.
  28. Tang, M. A. (1998). Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, Springer, New-York.
  29. Terasvirta, T. and Anderson, H. M. (1992). Characterizing nonlinearities in business cycle using smooth transition autoregressive models, Journal of Applied Econometrics, 7, S119-S136.
  30. Tong, H. (1978). On A Threshold Model, In: Chen, C. H., ed. Pattern Recognition and Signal Processing, Amsterdam: Sijthoff and Noordhoff, 101-141.
  31. Tong, H. and Lim, K. S. (1980). Threshold autoregressions, limit cycles, and data, J. Roy. Statist. Soc., 42, 245-292.
  32. Tong, H. (1990). Non-linear Time Series: A Dynamical System Approach, Oxford University Press, Oxford.


Supported by : 한국연구재단