• Kang, Yong Han (Institute of Liberal Education Catholic University of Daegu) ;
  • Jeong, Jin-Mun (Department of Applied Mathematics Pukyong National University)
  • Received : 2012.02.15
  • Published : 2014.01.31


The purpose of this paper is to derive a perturbation theory of evolution systems of the hyperbolic second order hyperbolic equations. We give an example of a partial functional equation as an application of the preceding result in case of the mixed problems for hyperbolic equations of second order with unbounded principal operators.


  1. A. Belarbi and M. Benchohra, Existence theory for perturbed impulsive hyperbolic differential inclusions with variable times, J. Math. Anal. Appl. 327 (2007), no. 2, 1116-1129.
  2. W. S. Edelstein and M. E. Gurtin, Uniqueness theorem in the linear dynamic theory of anisotropic viscoelastic solid, Arch. Rat. Mech. Anal. 17 (1964), 47-60.
  3. M. J. Garrido-Atienza and J. Real, Existence and uniqueness of solutions for delay evolution equations of second order in time, J. Math. Anal. Appl. 283 (2003), no. 2, 582-609.
  4. J. A. Goldstein, Semigroup of Linear Operators and Applications, Oxford University Press, Inc. 1985.
  5. J. M. Jeong, Y. C. Kwun, and J. Y. Park, Approximate controllability for semilinear retarded functional differential equations, J. Dynam. Control Systems 5 (1999), no. 3, 329-346.
  6. A. G. Kartsatos and L. P. Markov, An $L_2$-approach to second-order nonlinear functional evolutions involving m-accretive operators in Banach spaces, Differential Integral Equations 14 (2001), no. 7, 833-866.
  7. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
  8. T. Kato, Linear evolutions equations of "hyperbolic" type, J. Fac. Sci. Uni. Tokyo Sec. I 17 (1970), 241-258.
  9. J. L. Lions and E. Magenes, Non-Homogeneous Boundary value Problems and Applications, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
  10. D. G. Park, J. M. Jeong, and H. G. Kim, Regular problems for semilinear hyperbolic type equations, Nonlinear Differ. Equ. Appl. 16 (2009), 235-253.
  11. R. S. Phillips, Perturbation theory for semi-groups of linear operator, Trans. Amer. Math. Soc. 74 (1953), 199-221.
  12. H. Tanabe, Equations of Evolution, Pitman-London, 1979.
  13. J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer- Verlag, Newyork, 1996.
  14. K. Yosida, Functional Analysis, 2nd ed, Springer-Verlag, Berlin, Heidelberg, New York, 1968.