DOI QR코드

DOI QR Code

ON THE SECOND APPROXIMATE MATSUMOTO METRIC

  • Received : 2012.11.18
  • Published : 2014.01.31

Abstract

In this paper, we study the second approximate Matsumoto metric F = ${\alpha}+{\beta}+{\beta}^2/{\alpha}+{\beta}^3/{\alpha}^2$ on a manifold M. We prove that F is of scalar flag curvature and isotropic S-curvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.

References

  1. S. Bacso and M. Matsumoto, On Finsler spaces of Douglas typea generalization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997), no. 3-4, 385-406.
  2. D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.
  3. X. Chen and Z. Shen, On Douglas metrics, Publ. Math. Debrecen. 66 (2005), no. 3-4, 503-512.
  4. X. Cheng and Z. Shen, Randers metric with special curvature properties, Osaka. J. Math. 40 (2003), no. 1, 87-101.
  5. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel. J. Math. 169 (2009), 317-340. https://doi.org/10.1007/s11856-009-0013-1
  6. X. Cheng, H. Wang, and M. Wang, (${\alpha}$,${\beta}$)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen. 72 (2008), no. 3-4, 475-485.
  7. N. Cui, On the S-curvature of some (${\alpha}$,${\beta}$)-metrics, Acta. Math. Scientia, Series: A. 26 (2006), no. 7, 1047-1056.
  8. I. Y. Lee and M. H. Lee, On weakly-Berwald spaces of special (${\alpha}$,${\beta}$)-metrics, Bull. Korean Math. Soc. 43 (2006), no. 2, 425-441. https://doi.org/10.4134/BKMS.2006.43.2.425
  9. M.Matsumoto, Theory of Finsler spaces with (${\alpha}$,${\beta}$)-metric, Rep. Math. Phys. 31 (1992), no. 1, 43-84. https://doi.org/10.1016/0034-4877(92)90005-L
  10. B. Najafi, Z. Shen, and A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata. 131 (2008), 87-97. https://doi.org/10.1007/s10711-007-9218-9
  11. H. S. Park and E. S. Choi, On a Finsler spaces with a special (${\alpha}$,${\beta}$)-metric, Tensor (N.S.) 56 (1995), no. 2, 142-148.
  12. H. S. Park and E. S. Choi, Finsler spaces with an approximate Matsumoto metric of Douglas type, Comm. Korean. Math. Soc. 14 (1999), no. 3, 535-544.
  13. H. S. Park and E. S. Choi, Finsler spaces with the second approximate Matsumoto metric, Bull. Korean. Math. Soc. 39 (2002), no. 1, 153-163. https://doi.org/10.4134/BKMS.2002.39.1.153
  14. H. S. Park, I. Y. Lee, and C. K. Park, Finsler space with the general approximate Matsumoto metric, Indian J. Pure. Appl. Math. 34 (2002), no. 1, 59-77.
  15. H. S. Park, I. Y. Lee, H. Y. Park, and B. D. Kim, Projectively flat Finsler space with an approximate Matsumoto metric, Comm. Korean. Math. Soc. 18 (2003), no. 3, 501-513. https://doi.org/10.4134/CKMS.2003.18.3.501
  16. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
  17. A. Tayebi and B. Najafi, On isotropic Berwald metrics, Ann. Polon. Math. 103 (2012), no. 2, 109-121. https://doi.org/10.4064/ap103-2-1
  18. A. Tayebi, E. Peyghan, and H. Sadeghi, On Matsumoto-type Finsler metrics, Nonlinear Anal. Real World Appl. 13 (2012), no. 6, 2556-2561. https://doi.org/10.1016/j.nonrwa.2012.03.001
  19. A. Tayebi and M. Rafie Rad, S-curvature of isotropic Berwald metrics, Sci. China Ser. A 51 (2008), no. 12, 2198-2204. https://doi.org/10.1007/s11425-008-0095-y
  20. C.-H. Xiang and X. Cheng, On a class of weakly-Berwald (${\alpha}$,${\beta}$)-metrics, J. Math. Res. Expos. 29 (2009), no. 2, 227-236.

Cited by

  1. S-curvature for a new class of $$(\alpha , \beta )$$ ( α , β ) -metrics vol.111, pp.4, 2017, https://doi.org/10.1007/s13398-016-0358-3