DOI QR코드

DOI QR Code

GRADIENT RICCI SOLITONS WITH SEMI-SYMMETRY

  • Cho, Jong Taek (Department of Mathematics Chonnam National University) ;
  • Park, Jiyeon (Department of Mathematics and Statistics Graduate School Chonnam National University)
  • Received : 2013.02.14
  • Published : 2014.01.31

Abstract

We prove that a semi-symmetric 3-dimensional gradient Ricci soliton is locally isometric to a space form $\mathbb{S}^3$, $\mathbb{H}^3$, $\mathbb{R}^3$ (Gaussian soliton); or a product space $\mathbb{R}{\times}\mathbb{S}^2$, $\mathbb{R}{\times}\mathbb{H}^2$, where the potential function depends only on the nullity.

References

  1. E. Cartan, Lecons sur la geometrie des espaces de Riemann, Gauthier-Villars, Paris, 1946.
  2. B. Chow and D. Knopf, The Ricci Flow: An introduction, Mathematical Surveys and Monographs 110, American Mathematical Society, 2004.
  3. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. https://doi.org/10.4310/jdg/1214436922
  4. R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988.
  5. T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), no. 4, 301-307. https://doi.org/10.1016/0926-2245(93)90008-O
  6. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, http://arXiv.org/abs/math.DG/02111159.
  7. P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), no. 2, 329-345. https://doi.org/10.2140/pjm.2009.241.329
  8. K. Sekigawa, On some 3-dimensional complete Riemannian manifolds satisfying R(X, Y ) ${\cdot}$ R = 0, Tohoku Math. J. 27 (1975), no. 4, 561-568. https://doi.org/10.2748/tmj/1178240942
  9. Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y ) ${\cdot}$ R = 0. I. The Local version, J. Diff. Geom. 17 (1982), no. 4, 531-582. https://doi.org/10.4310/jdg/1214437486
  10. Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y )${\cdot}$ R = 0. II, Global versions, Geom. Dedicata 19 (1985), no. 1, 65-108.