DOI QR코드

DOI QR Code

Effect of Decomposition Product on the Insulation Characteristics of Mineral Oil as Insulation Medium of Distribution Transformer

주상변압기의 절연매질인 광유의 절연파괴특성에서 분해생성물의 영향

  • 임동영 ((주)형진 연구소) ;
  • 박숭규 ((주)신덕엔지니어링) ;
  • 박철호 ((주)형진 연구소) ;
  • 김기채 (영남대학교 전기공학과) ;
  • 이광식 (영남대학교 전기공학과) ;
  • 최은혁 (한국폴리텍대학 대구캠퍼스 스마트전기과)
  • Received : 2014.03.03
  • Accepted : 2014.04.18
  • Published : 2014.06.30

Abstract

This paper deals with the effect of decomposition products which occur in breakdown of mineral oil, on the insulation characteristics of its oil. Breakdown tests in the oil were conducted by the proposed experimental methods under a quasi-uniform field and AC HV (60Hz). The breakdown voltage in the oil shows characteristics of dispersion from successive breakdowns and, it is found that there are three patterns of the decomposition products behavior at the process of breakdown progress in the oil. Finally, the breakdown voltage dispersion in the oil can be described in detail based on the behavior patterns of the decomposition products and its diffusion time.

Acknowledgement

Supported by : 중소기업청

References

  1. A. K. Vijh, "Electric Strength and Molecular Properties of Gaseous Dielectrics", IEEE Trans. Electr. Insul., Vol. EI-12, No. 4, pp. 313-315, 1997.
  2. A. R. Martinez, and H. Sobral, "Effect of the Pressure on the Development of an Impulse Arc in $CO_2$", IEEE Trans. Electr. Insul., Vol. 17, No. 5, pp. 1536-1542, 2010. https://doi.org/10.1109/TDEI.2010.5595555
  3. Y. Hoshina, M. Sato, M. Shiiki, M. Hanai and E. Kaneko, "Lightning impulse breakdown characteristics of SF6 alternative gases for gas-insulated switchgear", IEE Proc.-Sci. Meas. Technol., Vol. 153, No. 1, pp. 1-6, 2006. https://doi.org/10.1049/ip-smt:20050007
  4. H. Goshima, S. Okabe, T. Ueda, H. Morii, N. Yamachi, K. Takahata and M. Hikita, "Fundamental Insulation Characteristics of High-Pressure $CO_2$ Gas for Gas-Insulated Power Equipment - Effect of Coating Conductor on Insulation Performance and Effect of Decomposition Products on Creeping Insulation of Spacer-", IEEE Trans. Electr. Insul., Vol. 15, No. 4, pp. 1023-1030, 2008. https://doi.org/10.1109/TDEI.2008.4591223
  5. S. Okabe, H. Goshima, A. Tanimura, S. Tsuru, Y. Yaegashi, E. Fujie and H. Okubo, "Fundamental Insulation Characteristic of High-Pressure $CO_2$ Gas under Actual Equipment Conditions", IEEE Trans. Electr. Insul., Vol. 14, No. 1, pp. 83-90, 2007. https://doi.org/10.1109/TDEI.2007.302875
  6. D. Rodriguez, R. S. Gorur and P. M. Hansen, "Effect of Humidity on the Breakdown Characteristics of Air in Uniform Field for the Very Low Frequency (VLF) Band", IEEE Trans. Electr. Insul., Vol. 16, No. 5, pp. 1397-1403, 2009. https://doi.org/10.1109/TDEI.2009.5293953
  7. D. Rodriguez, R. S. Gorur, P. M. Hansen, "Effect of Humidity on the Breakdown Characteristics of Air in Non-uniform Fields at 30 kHz", IEEE Trans. Electr. Insul., Vol. 17, No. 1, pp. 45-52, 2010. https://doi.org/10.1109/TDEI.2010.5412001
  8. K. S. Lee, D. I. Lee, J. H. Ju, Y. G. Lee and E. C. Shin, "A Study on the Discharge Characteristics of Liquid Nitrogen at Atmospheric Pressure", Trans KIEE, Vol. 45, No. 7, pp. 1026-1032, 1996.
  9. E. H. Choi, K. C. Kim and K. S. Lee, "Breakdown Characteristics of SF6 and Liquefied SF6 at Decreased Temperature", Journal of Electrical Engineering & Technology, Vol. 7, No. 5, pp. 765-771, 2012. https://doi.org/10.5370/JEET.2012.7.5.765
  10. K. S. Park, H. Y. Shin, B. J. Choi, W. J. Park and K. S. Lee, "The Characteristics of Tracking Phenomena and Surface Discharge Using Various Types of Electrode Arrangement in LN2 at the Atmospheric Pressure", Journal of KIIEE, Vol. 17, No. 3, pp. 49-55, 2003.
  11. M. Hara, K. Satia, and H. Satio, "Analysis of Bubble Behavior in Cryogenic Liquids under Non-Uniform Electric Fields", T. IEE Japan, Vol. 113-A, No. 4, pp. 337-344, 1993.
  12. B. S. Sommers, J. E. Foster, N. Y. Babaeva and M. J. Kushner, "Observations of Electric Discharge Streamer Propagation and Capillary Oscillations on the Surface of Air Bubbles in Water", J. Phys. D: Appl. Phys., Vol. 44, pp. 1-6, 2011.
  13. A. Beroual, M. Zahn, A. Badent, K. Kist, A. J. Schwabe, H. Yamashita, K. Y Amazawa, M. Danikas, W. G. Chadband and Y. Torshin, "Propagation and Structure of Streamers in Liquid Dielectrics", IEEE Electrical Insulation Magazine, Vol. 14, No. 2, pp. 6-17, 1998.
  14. Y. Kamata and Y. Kako, "Flashover Characteristics of Extremely Long Gaps in Transformer Oil under Non-Uniform Field Conditions", IEEE Trans. Electr. Insul., Vol. EI-15, No.1, pp. 18-26, 1980. https://doi.org/10.1109/TEI.1980.298292
  15. H. Borsi, "Dielectric Behavior of Silicone and Ester Fluids for Use in Distribution Transformers", IEEE Trans. Electr. Insul., Vol. 26, No. 4, pp. 755-762, 1991. https://doi.org/10.1109/14.83699
  16. I. Fofana, H. Borsi and E. Gockenbach, "Fundamental Investigations on Some Transformer Liquids under Various Outdoor Conditions", IEEE Trans. Electr. Insul., Vol. 8, No. 6, pp. 1040-1047, 2001. https://doi.org/10.1109/94.971463
  17. J. Wada, A. Nakajima, H. Miyahara, T. Takuma, S. Yanabu, S. Okabe and M. Kohtoh, "Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus", IEEE Trans. Electr. Insul., Vol. 13, No. 4, pp. 830-837, 2006. https://doi.org/10.1109/TDEI.2006.1667742
  18. Korea Standards Association, "Electrical insulating Oils", KS C 2301, 2006.
  19. Korea Standards Association, "Insulating Liquids-Determination of the Breakdown Voltage at Power Frequency-Test Method", KS C IEC 60156, 2003.
  20. IEEJ, "Discharge Handbook", IEEJ Discharge Handbook Publication committee, pp. 553-558, 1998.