Formation of Threshold Switching Chalcogenide for Phase Change Switch Applications

DOI QR코드

DOI QR Code

Bang, Ki Su;Lee, Seung-Yun

  • 투고 : 2014.01.06
  • 심사 : 2014.02.02
  • 발행 : 2014.01.30

초록

The programmable switches which control the delivery of electrical signals in programmable logic devices are fabricated using memory technology. Although phase change memory (PCM) technology is one of the most promising candidates for the manufacturing of the programmable switches, the threshold switching material should be added to a PCM cell for realization of the programmable switches based on PCM technology. In this work, we report the impurity-doped $Ge_2Sb_2Te_5$ (GST) chalcogenide alloy exhibiting threshold switching property. Unlike the GST thin film, the doped GST thin film prepared by the incorporation of In and P into GST is not crystallized even at the postannealing temperature higher than $200^{\circ}C$. This specific crystallization behavior in the doped GST thin film is attributed to the stabilization of the amorphous phase of GST by In and P doping.

키워드

Chalcogenide;Programmable switch;Phase change memory;Threshold switching;Doping;Crystallization

참고문헌

  1. K. N. Chen, L. Krusin-Elbaum, D. M. Newns, B. G. Elmegreen, R. Cheek, N. Rana, A. M. Young, S. J. Koester, and C. Lam, IEEE Electron Device Lett. 29, 131 (2008). https://doi.org/10.1109/LED.2007.912016
  2. S. -Y. Lee, S. Jung, S. -M. Yoon, and Y. S. Park, J. Non-Cryst. Solids 358, 2405 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.12.014
  3. C. Auricchio, M. Borgatti, A. Martino, A. Maurelli, R. Pelliconi, and P. Rolandi, Proc. of European Solid State Device Research Conf. 211 (2003).
  4. T. Lowrey, W. Parkinson, and G. Wicker, US Patent US 8379439 B2, 2013.
  5. S. Y. Lee, Y. S. Park, S. M. Yoon, S. Jung, S. H. Cheon, and B. G. Yu, US Patent US 20100148141 A1, 2010.
  6. J. Wang, R. Katz, J. Sun, B. Cronquist, J. McCollum, T. Speed, and W. Plants, IEEE Trans. Nucl. Sci. 46, 1728 (1999). https://doi.org/10.1109/23.819146
  7. S. -Y. Lee and Y. S. Park, J. Korean Vac. Soc. 19, 155 (2010). https://doi.org/10.5757/JKVS.2010.19.2.155
  8. Y. M. Lee, K. Kim, H. -J. Shin, M. -C. Jung, and Y. Qi, J. Korean Vac. Soc. 21, 348 (2012). https://doi.org/10.5757/JKVS.2012.21.6.348
  9. Y. -H. Huang, C. -H. Hang, Y. -J. Huang, and T. -E. Hsieh, J. Alloys Compd. 580, 449 (2013). https://doi.org/10.1016/j.jallcom.2013.06.129
  10. Y. Lai, Adv. Sci. Lett. 9, 523 (2012). https://doi.org/10.1166/asl.2012.2621
  11. H. J. Kroezen, G. Eising, G. Ten Brink, G. Palasantzas, B. J. Kooi, and A. Pauza, Appl. Phys. Lett. 100, 094106 (2012). https://doi.org/10.1063/1.3691179
  12. P. -C. Chang, H. -W. Huang, C. -C. Chang, S. -C. Chang, M. -J. Tsai, and T. -S. Chin, Thin Solid Films 544, 107 (2013). https://doi.org/10.1016/j.tsf.2013.04.101
  13. M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, and M. Wuttig, Appl. Phys. Lett. 100, 143505 (2012). https://doi.org/10.1063/1.3700743
  14. E. Morales-Sanchez, E. F. Prokhorov, J. Gonzalez-Hernandez, and A. Mendoza-Galvan, Thin Solid Films 471, 243 (2005). https://doi.org/10.1016/j.tsf.2004.06.141
  15. Z. Yang and P. Lucasw, J. Am. Ceram. Soc. 92, 2920 (2009). https://doi.org/10.1111/j.1551-2916.2009.03323.x
  16. S. Prakash, S. Asokan, and D. B. Ghare, IEEE Electron Device Lett. 18, 45 (1997). https://doi.org/10.1109/55.553039