DOI QR코드

DOI QR Code

An ultrastructural study of the cuticle in the byssus of marine mussel (Mytilus coruscus)

홍합 (Mytilus coruscus) 족사 cuticle의 초미세구조 연구

Kim, Sangsik;Choi, Seung Hwan;Yoon, Sung Jin;Hwang, Dong Soo
김상식;최승환;윤성진;황동수

  • Received : 2014.12.23
  • Accepted : 2015.01.12
  • Published : 2014.12.31

Abstract

Mussel byssus is a bundle of threads used to attach mussels to wet substrates. Recently, a thin cuticle layer on the byssus has attracted public attentions due to its remarkable toughness - stiff as epoxy resin and extensible as rubber. Here, we observed ultrastructure of the cuticle layer in a far eastern mussel (Mytilus coruscus) to understand underlying mechanisms for the mechanical properties. The cuticle layer observed by TEM was composed of submicron-sized granular inclusions in a continuous matrix phase. In addition, ultrastructural study in the presence of tertiary amine (Tetraethylammonium, TEA) showed an evidence that the cuticle is stabilized by cation-${\pi}$ interaction.

Keywords

Byssal coating;cuticle;cation-${\pi}$ interaction

References

  1. J.H.Waite, J.H., et al. 1989. The glue protein of ribbed mussels (Geuhensia demissa): a natural adhesive with some features of collagen. J. Comp. Physiol. B 159, 517-525. https://doi.org/10.1007/BF00694376
  2. J.H.Waite, L.M Rzepecki. 1991. alpha, beta-Dehydro-3, 4-dihydroxyphenylalanine derivatives: rate and mechanism of formation. Arch. Physiol. Biochem. 285, 27-36 https://doi.org/10.1016/0003-9861(91)90324-C
  3. Koji Inoue, Yasuhiro Takeuchi et al. 1996. Adhesive Protein cDNA Sequence of the Mussel Mytilus coruscus and Its Evolutionary Implications. J Mol Evol 43, 348-356. https://doi.org/10.1007/BF02339009
  4. S.W.Taylor, D.B.Chase et al. 1996. Ferric ion complexes of a DOPA-containing adhesive protein from Mytilusedulis. Inorg.Chem. 35, 7572-7577. https://doi.org/10.1021/ic960514s
  5. M.J.Harrington, A.Masic et al. 2010. Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings. Science 328, 216-220. https://doi.org/10.1126/science.1181044
  6. H.Zeng, D.S.Hwang et al., 2010. Strong Reversible $Fe^{3+}$ -mediated Bridging between Dopa-Containing Protein Films in Water. Natl.Acad.Sci.U.S.A. 107, 12850-12853 https://doi.org/10.1073/pnas.1007416107
  7. D.S.Hwang, A.Masic et al. 2013. Marine Hydroid Perisarc: A chitin- and melanin-reinforced composite with DOP A-iron (III) complexes. Acta Biomater. 9, 8110-8117 https://doi.org/10.1016/j.actbio.2013.06.015
  8. J.C.Ma, D.A.Dougherty, 1997. The Cation-$\pi$ Interaction. Chem. Rev. 97,1303-1324. https://doi.org/10.1021/cr9603744
  9. Dougherty DA. 1996. Cation-$\pi$ interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science, 271, 163-168. https://doi.org/10.1126/science.271.5246.163
  10. G.Waksman, D.Cowburn et al., 1992. Crystal structure of the phosphotyrosine recognition domain $SH_2$ of v-src complexed with tyrosine-phosphorylated peptides. Nature 358, 646-665. https://doi.org/10.1038/358646a0
  11. Qi Lin, Delphine Gourdon et al. 2007. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Natl.Acad.Sci.U.S.A. 104, 3782-3786. https://doi.org/10.1073/pnas.0607852104
  12. J.H.Waite, 1986. Mussel glue from Mytilus californianus Conrad: a comparative study. J. Camp. Physiol. B 156, 491-496. https://doi.org/10.1007/BF00691034
  13. Lee BP, Messersmith PB, Israelachvili JN, Waite JH. 2011. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99-132. https://doi.org/10.1146/annurev-matsci-062910-100429
  14. H.J.Cha, D.S.Hwang and S.Lim. 2008. Development of bioadhesives from marine mussels. Biotechnol. J. 3, 631-638. https://doi.org/10.1002/biot.200700258
  15. H.G.Silverman and F.F.Roberto. 2007. Understanding Marine Mussel Adhesion. Mar.Biotechnol. 9, 661-681. https://doi.org/10.1007/s10126-007-9053-x
  16. C.P.Barnes, S.A.Sell, E.D.Boland, D.G.Simpson and G.L.Bowlin. 2007. Designing the next generation of tissue engineering scaffolds. Adv. Drug. Deliv. Rev. 59, 1413-1433. https://doi.org/10.1016/j.addr.2007.04.022
  17. Holten-Andersen N, Thomas E.Mates et al. 2009. Metals and the Integrity of a Biological Coating: The Cuticle of Mussel Byssus. Langmuir. 25, 3323-3326. https://doi.org/10.1021/la8027012
  18. Holten-Andersen N and J.H.Waite. 2008. Mussel-designed protective coatings for compliant substrates. J Dent Res. 87, 700-709.
  19. Holten-Andersen N, Fantner GE, Hohlbauch S, Waite JH, Zok FW. 2007. Protective coatings on extensible biofibres. nature materials. 6, 669-672. https://doi.org/10.1038/nmat1956
  20. R.MacKinnon, G.Yellen. 1990. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science, 250, 276-279. https://doi.org/10.1126/science.2218530
  21. C.A.Ahern, A.L.Eastwood et al. 2006. A Cation-$\pi$ Interaction between Extracellular TEA and an Aromatic Residue in Potassium Channels. J. Gen. Physiol. 128, 649-657. https://doi.org/10.1085/jgp.200609654
  22. L.Heginbo-tham, R.MacKinnon. 1992. The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483-491. https://doi.org/10.1016/0896-6273(92)90276-J
  23. S.A.Pless, J.D.Galpin et al. 2011, A novel mechanism for fine-tuning open state stability in a voltage-gated potassium channel. Nat.Commun. 2, 351 https://doi.org/10.1038/ncomms1351
  24. J.H.Waite, 1983. vidence for a repeating 3,4-dihydroxyphenylalanine- and hydroxyproline - containing decapeptide in the adhesive protein of the mussel, Mytilus edulis L. J.Biol.Chem. 258, 2911-2915.
  25. S.W.Taylor, D.B.Chase et al. 1996. Ferric Ion Complexes of a DOPA-Containing Adhesive Protein from Mytilus edulis, Inorg.Chem. 35, 7572-7577. https://doi.org/10.1021/ic960514s

Acknowledgement

Supported by : Ministry of Oceans and Fisheries