DOI QR코드

DOI QR Code

Molecular adaptation of the CREB-Binding Protein for aquatic living in cetaceans

  • Received : 2014.12.24
  • Accepted : 2015.01.12
  • Published : 2014.12.31

Abstract

Cetaceans (whales, dolphins, and porpoises) are aquatic mammals that experienced drastic changes during the transition from terrestrial to aquatic environment. Morphological changes include streamlined body, alterations in the face, transformation of the forelimbs into flippers, disappearance of the hindlimbs and the acquisition of flukes on the tail. For a prolonged diving, cetaceans acquired hypoxia-resistance by developing various anatomical and physiological changes. However, molecular mechanisms underlying these adaptations are still limited. CREB-binding protein (CREBBP) is a transcriptional co-activator critical for embryonic development, growth control, metabolic homeostasis and responses to hypoxia. Natural selection analysis of five cetacean CREBBPs compared with those from 15 terrestrial relatives revealed strong purifying selection, supporting the importance of its role in mammals. However, prediction for amino acid changes that elicit functional difference of CREBBP identified three cetacean specific changes localized within a region required for interaction with SRCAP and in proximal regions to KIX domain of CREBBP. Mutations in CREBBP or SRCAP are known to cause craniofacial and skeletal defects in human, and KIX domain of CREBBP serves as a docking site for transcription factors including c-Myb, an essential regulator of haematopoiesis. In these respects, our study provides interesting insights into the functional adaptation of cetacean CREBBP for aquatic lifestyle.

Keywords

cetacean;CREB-binding protein;aquatic adaptation;craniofacial;haematopoiesis

References

  1. Thewissen, J. G., Cooper, L. N., Clementz, M. T., Bajpai, S., and Tiwari, B. N. 2007. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature. 450, 1190-1194. https://doi.org/10.1038/nature06343
  2. Uhen, M. D. 2007. Evolution of marine mammals: back to the sea after 300 million years. Anat. Rec. (Hoboken). 290, 514-522. https://doi.org/10.1002/ar.20545
  3. Reidenberg, J. S. 2007. Anatomical adaptations of aquatic mammals. Anat. Rec. (Hoboken). 290, 507-513. https://doi.org/10.1002/ar.20541
  4. Kooyman, G. L. 2009. Diving physiology. Encyclopedia of marine mammals. 2nd Ed. 327-332.
  5. Blobel, G. A. 2002. CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. J. Leukoc. Biol. 71, 545-556.
  6. Oike Y., Takakura, N., Hata, A. et al., 1999. Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood. 93, 2772-2779.
  7. Petrij, F., Giles, R. H., Dauwerse, H. G. et al. 1995. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature. 376, 348-351. https://doi.org/10.1038/376348a0
  8. Yim, H. S., Cho, Y. S., Guang, X. et al., 2014. Minke whale genome and aquatic adaptation in cetaceans. Nat. Genet. 46, 88-92.
  9. Loytynoja, A. and Goldman, N. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl. Acad. Sci. 30, 10557-10562.
  10. Letunic, I. and Bork, P. 2006. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127-128.
  11. Liang, L., Shen, Y. Y., Pan, X. W. et al. 2013. Adaptive Evolution of the Hox Gene Family for Development in Bats and Dolphins. PLoS ONE 8(6), e65944.
  12. Yang, Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591. https://doi.org/10.1093/molbev/msm088
  13. Zhang, J., Nielsen. R. and Yang, Z. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472-2479. https://doi.org/10.1093/molbev/msi237
  14. Sievers, F. and Higgins, D. G. 2014. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol. 1079, 105-116. https://doi.org/10.1007/978-1-62703-646-7_6
  15. Adzhubei, I. A., Schmidt, S., Peshkin, L. et al. 2010. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248-249. https://doi.org/10.1038/nmeth0410-248
  16. Yang, Z. and Bielawski, J. P. 2000. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 496-503. https://doi.org/10.1016/S0169-5347(00)01994-7
  17. Hood, R. L., Lines, M. A., Nikkel, S. M. et al. 2012. Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome. Am. J. Hum. Genet. 90, 308-313. https://doi.org/10.1016/j.ajhg.2011.12.001
  18. Thakur, J.K., Yadav, A. and Yadav, G. 2014. Molecular recognition by the KIX domain and its role in gene regulation. Nucleic Acids Res. 42, 2112-2125. https://doi.org/10.1093/nar/gkt1147
  19. Mucenski, M. L., McLain, K., Kier, A.B. et al. 1991. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell. 65, 677-689. https://doi.org/10.1016/0092-8674(91)90099-K
  20. Yu, B. D., Hess, J. L., Horning, S. E. et al. 1995. Altered Hox expression and segmental identity in Mll-mutant mice. Nature. 378, 505-508. https://doi.org/10.1038/378505a0
  21. Semenza, G. L. 2012. Hypoxia-inducible factors in physiology and medicine. Cell. 148, 399-408. https://doi.org/10.1016/j.cell.2012.01.021

Acknowledgement

Supported by : KIOST (Korea Institute of Ocean Science & Technology