DOI QR코드

DOI QR Code

Spectral and Mechanistic Investigation of Oxidative Decarboxylation of Phenylsulfinylacetic Acid by Cr(VI)

  • Subramaniam, Perumal ;
  • Selvi, Natesan Thamil ;
  • Devi, Soundarapandian Sugirtha
  • Received : 2013.09.03
  • Accepted : 2014.01.16
  • Published : 2014.02.20

Abstract

The oxidative decarboxylation of phenylsulfinylacetic acid (PSAA) by Cr(VI) in 20% acetonitrile -80% water (v/v) medium follows overall second order kinetics, first order each with respect to [PSAA] and [Cr(VI)] at constant [$H^+$] and ionic strength. The reaction is acid catalysed, the order with respect to [$H^+$] is unity and the active oxidizing species is found to be $HCrO_3^+$. The reaction mechanism involves the rate determining nucleophilic attack of sulfur atom of PSAA on chromium of $HCrO_3^+$ forming a sulfonium ion intermediate. The intermediate then undergoes ${\alpha}$,${\beta}$-cleavage leading to the liberation of $CO_2$. The product of the reaction is found to be methyl phenyl sulfone. The operation of substituent effect shows that PSAA containing electron-releasing groups in the meta- and para-positions accelerate the reaction rate while electron withdrawing groups retard the rate. An excellent correlation is found to exist between log $k_2$ and Hammett ${\sigma}$ constants with a negative value of reaction constant. The ${\rho}$ value decreases with increase in temperature evidencing the high reactivity and low selectivity in the case of substituted PSAAs.

Keywords

Phenylsulfinylacetic acid;Oxidative decarboxylation;Nucleophilic attack of sulfur;Substituent effect

References

  1. Cainelli, G.; Cardillo, G. Chromium Oxidations in Organic Chemistry; Springer: Berlin, 1984.
  2. Li, M.; Johnson, M. E. Synth. Commun. 1995, 25, 533. https://doi.org/10.1080/00397919508011387
  3. Korotin, M. A.; Anisimov, V. I.; Khomskii, D. I.; Sawatzky, G. A. Phys. Rev. Lett. 1998, 80, 4305. https://doi.org/10.1103/PhysRevLett.80.4305
  4. Urbano, A. M.; Ferreira, L. M. R.; Alpoim, M. C. Curr. Drug Metab. 2012, 13, 284. https://doi.org/10.2174/138920012799320464
  5. Sobol, Z.; Schiestl, R. H. Environ. Mol. Mutagen. 2012,53, 94. https://doi.org/10.1002/em.20679
  6. Wise, S. S.; Holmes, A. L.; Wise, J. P. Sr. Rev. Environ. Health 2008, 23, 39.
  7. Nickens, K. P.; Patierno, S. R.; Ceryak, S. Chem-Biol. Interact. 2010, 188, 276. https://doi.org/10.1016/j.cbi.2010.04.018
  8. Little, L. G.; Sugden, K. D. Metal Complex-DNA Interactions 2009, 463.
  9. Macfie, A.; Hagan, E.; Zhitkovich, A. Chem. Res. Toxicol. 2010, 23, 341. https://doi.org/10.1021/tx9003402
  10. Gurumurthy, R.; Anandabaskaran, T.; Sathiyanarayanan, K. Oxid. Commun. 1998, 21, 222.
  11. Krishnasamy, K.; Venkateswaran, V.; Shanmugam, M.; Dharmaraja, J. J. Sulfur Chem. 2007, 28, 365. https://doi.org/10.1080/17415990701420270
  12. Karunakaran, C.; Chidambaranathan, V. Oxid. Commun. 1998, 21, 381.
  13. Levina, A.; Zhang, L.; Lay, P. A. J. Am. Chem. Soc. 2010, 132, 8720. https://doi.org/10.1021/ja101675w
  14. Srinivasan, C.; Chellamani, A.; Rajagopal, S. J. Org. Chem. 1985, 50, 1201. https://doi.org/10.1021/jo00208a011
  15. Ganesan, T. K.; Rajagopal, S.; Bharathy, J. B. Tetrahedron 2000, 56, 5885. https://doi.org/10.1016/S0040-4020(00)00431-2
  16. Panigrahi, G. P.; Mahapatro, D. D. Int. J. Chem. Kinet. 1981, 13, 85. https://doi.org/10.1002/kin.550130108
  17. Olatunji, M. A.; Ayoko, G. A. Polyhedron 1988, 7, 11. https://doi.org/10.1016/S0277-5387(00)81175-4
  18. Dilsha, K. M.; Kothari, S. Prog. React. Kinet. Mech. 2007,32, 119. https://doi.org/10.3184/146867807X228236
  19. Pitchumani, K.; Subramanian, V.; Jegatheesan, P. P.; Srinivasan, C. Proc. Indian Acad. Sci. (Chem. Sci.) 1992, 104,67.
  20. Sankararaj, B.; Rajagopal, S.; Pitchumani, K. Indian J. Chem. 1995, 34A, 440.
  21. Pandey, D.; Kothari, S. Prog. React. Kinet. Mech. 2009,34, 199. https://doi.org/10.3184/146867809X466221
  22. Karunakaran, C.; Venkataramanan, R.; Kamalam, R. Monatsh Chem. 1999, 130, 1461. https://doi.org/10.1007/s007060050304
  23. Sumangala, V.; Boja Poojary; Chidananda, N.; Arulmoli, T.; Shalini Shenoy J. Chem. Pharm. Res. 2012, 4, 1661.
  24. Gogan, N. J.; Newlands, M. J.; Tan, B.-Y. Can. J. Chem. 1972, 50, 3203.
  25. Janczewski, M.; Najda, T.; Jablonska, P. T. Polish J. Chem. 1982, 56, 1297.
  26. Jaxa-Chamiec, A. A; Sammes, P. G.; Kennewell, P. D. J. Chem. Soc. Perkin Trans. 1 1980, 170.
  27. Cass, Q. B.; Jaxa-Chamiec, A. A; Sammes, P. G. J. Chem. Soc. Chem. Commun. 1981, 248.
  28. Thomas, A. Tetrahedron 1991, 47, 4905. https://doi.org/10.1016/S0040-4020(01)80956-X
  29. Lee, K. Bull. Korean Chem. Soc. 2011, 32, 3477. https://doi.org/10.5012/bkcs.2011.32.9.3477
  30. Subramaniam, P.; Thamil Selvi, N. Am. J. Anal. Chem. 2013, 4, 20. https://doi.org/10.4236/ajac.2013.410A1003
  31. Walker, D.; Leib, J. Can. J. Chem. 1962, 40, 1242. https://doi.org/10.1139/v62-192
  32. Kenney, W. J.; Walsh, J. A.; Davenport, D. A. J. Am. Chem. Soc. 1961, 83, 4019. https://doi.org/10.1021/ja01480a016
  33. Signorella, S.; Rizzotto, M.; Daier, V.; Franscaroli, M. I.; Palopoli, C.; Martino, D.; Boussekou, A.; Sala, L. F. J. Chem. Soc. Dalton Trans. 1996, 1607.
  34. Perez-Benito, J. F.; Arias, C. J. Phys. Chem. A 1997, 101,4726. https://doi.org/10.1021/jp963868d
  35. Palopoli, C. M.; Signorella, S. R.; Sala, L. F. New J. Chem. 1997, 21, 343.
  36. Hamm, R. E.; Johnson, R. L.; Perkins, R. H.; Davis, R. E. J. Am. Chem. Soc. 1958, 80, 4469. https://doi.org/10.1021/ja01550a008
  37. Shahid, M.; Khan, I. A.; Kabir-ud-Din. J. Chem. Soc. Dalton Trans. 1990, 3007.
  38. Kabir-ud-Din.; Hartani, K.; Khan, Z. Colloids Surf. A Physicochem. Eng. Asp. 2001, 193, 1. https://doi.org/10.1016/S0927-7757(01)00475-7
  39. Abid, M.; Khan, Z. Trans. Met. Chem. 2003, 28, 79. https://doi.org/10.1023/A:1022555330920
  40. Gonzalez, J. C.; Daier, V.; Garcia, S.; Goodman, B. A.; Atria, A. M.; Sala, L. F. J. Chem. Soc. Dalton Trans. 2004, 15,2288.
  41. Wiberg, K. B. Oxidation in Organic Chemistry, Part A; Academic Press: New York, 1965; pp 60-184.
  42. Das, A. K.; Mondal, D.; Kar, D.; Das, M. Int. J. Chem. Kinet. 2001, 33, 173. https://doi.org/10.1002/1097-4601(200103)33:3<173::AID-KIN1011>3.0.CO;2-I
  43. Mangalam, G.; Gurumurthy, R.; Arul, R.; Karthikeyan, R. Indian J. Chem. 1995, 34B, 107.
  44. Meenakshisundaram, S.; Vinothini, R. Croat. Chem. Acta. 2003, 76, 75.
  45. Karunakaran, C.; Karuthapandian, S.; Suresh, S. Int. J. Chem. Kinet. 2003, 35, 1. https://doi.org/10.1002/kin.10098
  46. Amis, E. S. Solvent Effects on Reaction Rates and Mechanisms; Academic Press: New York, 1967, pp 42-48.
  47. Nandibewoor, S. T.; Morab, V. A. J. Chem. Soc. Dalton Trans. 1995, 483.
  48. Karunakaran, C.; Chidambaranathan, V. Monatsh Chem. 2000, 131, 1123. https://doi.org/10.1007/s007060070019
  49. Petersen, R. C.; Markgraf, J. H.; Ross, S. D. J. Am. Chem. Soc. 1961, 83, 3819. https://doi.org/10.1021/ja01479a021
  50. Exner, O. Collect. Czech. Chem. Commun. 1964, 29, 1094. https://doi.org/10.1135/cccc19641094
  51. Exner, O. J. Chem. Soc. Perkin Trans. 2 1993, 973.
  52. Chellamani, A.; Alhaji, N. M. I.; Rajagopal, S.; Sevvel, R.; Srinivasan, C. Tetrahedron 1995, 51, 12677. https://doi.org/10.1016/0040-4020(95)00825-S
  53. Chellamani, A.; Alhaji, N. M. I.; Rajagopal, S. J. Chem. Soc. Perkin Trans. 2 1997, 299.
  54. Chellamani, A.; Kulanthaipandi, P.; Rajagopal, S. J. Org. Chem. 1999, 64, 2232. https://doi.org/10.1021/jo9815756
  55. Chellamani, A.; Harikengaram, S. J. Mol. Catal. A 2006,247, 260. https://doi.org/10.1016/j.molcata.2005.11.024
  56. Mahapatro, S. N.; Krumpolc, M.; Rocek, J. J. Am. Chem. Soc. 1980, 102, 3799. https://doi.org/10.1021/ja00531a022
  57. Shen-Yang, T.; Li, K.-A. Talanta 1986, 33, 775. https://doi.org/10.1016/0039-9140(86)80187-4
  58. Brasch, N. E.; Buckingbam, D. A.; Evans, B. A.; Clark, C. R. J. Am. Chem. Soc. 1996, 118, 7969. https://doi.org/10.1021/ja960843j
  59. Levitt, L. S. J. Org. Chem. 1955, 20, 1297. https://doi.org/10.1021/jo01127a001
  60. Westheimer, F. H. Chem. Rev. 1949, 45, 419. https://doi.org/10.1021/cr60142a002
  61. Lay, P. A.; Levina, A. Inorg. Chem. 1996, 35, 7709. https://doi.org/10.1021/ic960663a
  62. Pedrosa de Jesus, J. O'Brien, P. Polyhedron 1992, 11, 1687. https://doi.org/10.1016/S0277-5387(00)83725-0
  63. Kaiwar, S. P.; Sreedhara, A.; Raghavan, M. S. S.; Rao, C. P.; Jadhav, V.; Ganesh, K. N. Polyhedron 1996, 15, 765. https://doi.org/10.1016/0277-5387(95)00359-7
  64. Thenraja, D.; Subramaniam, P.; Srinivasan, C. Tetrahedron 2002, 58, 4283. https://doi.org/10.1016/S0040-4020(02)00358-7
  65. Murray, R. W.; Jeyaraman, R.; Krishna Pillai, M. J. Org. Chem. 1987, 52, 746. https://doi.org/10.1021/jo00381a007
  66. Bloodworth, A. J.; Melvin, T.; Mitchell, J. C. J. Org. Chem. 1988, 53, 1078. https://doi.org/10.1021/jo00240a027
  67. Ganesan, T. K.; Rajagopal, S.; BoscoBharathy, J. R.; Md. Sheriff, A. I. J. Org. Chem.1998, 63, 21. https://doi.org/10.1021/jo970602+
  68. Watanabe, Y.; Iyanagi, T.; Oae, S. Tetrahedron Lett. 1980, 21, 3685. https://doi.org/10.1016/S0040-4039(00)78745-4
  69. Laleu, B.; Santarem Machado, M.; Lacour, J. Chem. Commun. 2006, 2786.
  70. Crossno, S. K.; Kalbus, L. H.; Kalbus, G. E. J. Chem. Edn. 1996, 73, 175. https://doi.org/10.1021/ed073p175
  71. Hasan, F.; Rocek, J. Tetrahedron 1974, 30, 21. https://doi.org/10.1016/S0040-4020(01)97211-4
  72. Mitewa, M.; Bontchev, P. R. Coord. Chem. Rev. 1985, 61,241. https://doi.org/10.1016/0010-8545(85)80006-0
  73. Codd, R.; Dillon, C. T.; Levina, A.; Lay, P. A. Coord. Chem. Rev. 2001, 537, 216.
  74. Gould, E. S. Coord. Chem. Rev. 1994, 651, 135.
  75. Ghosh, M. C.; Gould, E. S. J. Am. Chem. Soc. 1993, 115,3167. https://doi.org/10.1021/ja00061a016
  76. Scott, S. L.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1992, 114, 4205. https://doi.org/10.1021/ja00037a025

Cited by

  1. Importance of ground state stabilization in the oxovanadium(IV)-salophen mediated reactions of phenylsulfinylacetic acids by hydrogen peroxide – Non-linear Hammett correlation vol.117, 2016, https://doi.org/10.1016/j.poly.2016.06.038
  2. Electrophilic and nucleophilic pathways in ligand oxide mediated reactions of phenylsulfinylacetic acids with oxo(salen)chromium(V) complexes vol.115, 2016, https://doi.org/10.1016/j.poly.2016.05.012
  3. Modulation of catalytic activity by ligand oxides in the sulfoxidation of phenylmercaptoacetic acids by oxo(salen)chromium(V) complexes vol.119, 2016, https://doi.org/10.1016/j.poly.2016.08.013
  4. Proximal effect of the nitrogen bases in the oxidative decarboxylation of phenylsulfinylacetic acids by oxo(salen)chromium(V) complexes vol.390, 2014, https://doi.org/10.1016/j.molcata.2014.03.021