DOI QR코드

DOI QR Code

Preparation of cross-linked silk fibroin film by γ-irradiation and their application as supports for human cell culture

  • Park, Hyean-Yeol (Department of Chemistry, Hannam University) ;
  • Kim, Yoon-Seob (Department of Chemistry, Hannam University) ;
  • Choi, Seong-Ho (Department of Chemistry, Hannam University)
  • Received : 2014.01.14
  • Accepted : 2014.02.03
  • Published : 2014.02.25

Abstract

This study described about preparation of the cross-linked silk fibroin (SF) film by ${\gamma}$-irradiation of the casted SF film, which is fabricated from aqueous solution regenerated via fibers of cocoons and their application as supports for human cell culture. The properties of cross-linked SF film were evaluated by FT-IR spectroscopy, contact angle, solubility to water, thermal analysis, surface area analyzer, and morphology via scanning electron microscopy (SEM). The cross-linked SF films were not dissolved in water and exhibited the rough surface morphology, large surface area, and good thermal properties. The human fibroblast cell (CCD-986sk) and embryo kidney-ft cell were well growed on the surface of cross-linked SF film supports prepared by ${\gamma}$-irradiation. The cross-linked SF film prepared by ${\gamma}$-irradiation can be used as biomaterials for human cell culture.

Keywords

cross-linked silk fibroin film;${\gamma}$-Irradiation;human cell culture;human fibroblast cell;human embryo kidney-ft cell

Acknowledgement

Supported by : Hannam University

References

  1. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond and D. L. Kaplan, Biomaterials, 24(3), 401-416 (2003). https://doi.org/10.1016/S0142-9612(02)00353-8
  2. Q. Lu, X. Hu, X. Wang, J. A. Kluge, S. Lu, P. Cebe and D. L. Kaplan, Acta Biomater, 6(4), 1380-1387 (2010). https://doi.org/10.1016/j.actbio.2009.10.041
  3. Y. Wang, H. J. Kim, G. Vunjak-Novakovic and D. L. Kaplan, Biomaterials, 27(36), 6064-6082 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.008
  4. Z. Cao, X. Chen, J. Yao, L. Huang and Z. Shao, Soft Matter, 3(7), 910-915 (2007). https://doi.org/10.1039/b703139d
  5. H. J. Jin and D. L. Kaplan, Nature, 424(6952), 1057-1061 (2003). https://doi.org/10.1038/nature01809
  6. B. B. Mandal, S. Kapoor and S. C. Kundu, Biomaterials, 30(14), 2826-2836 (2009). https://doi.org/10.1016/j.biomaterials.2009.01.040
  7. J. Ming and B. Auo, Polym. Eng. Sci., 54(1), 129-136 (2014). https://doi.org/10.1002/pen.23542
  8. G. Yang, L. Zhang and Y. Liu, J. Membr. Sci., 177(1-2), 153-161 (2000). https://doi.org/10.1016/S0376-7388(00)00467-1
  9. A. Sionkowska and A. Plaecka, J. Mol. Liq., 178, 5-14 (2013). https://doi.org/10.1016/j.molliq.2012.10.042
  10. J. Kundu, L. A. Poole-warren, P. Martens and S. C. Kundu, Acta Biomater, 8(5), 1720-1729 (2012). https://doi.org/10.1016/j.actbio.2012.01.004
  11. E. S. Gio and S. M. Hudson, Biomacromolecules, 8(1), 258-264 (2007). https://doi.org/10.1021/bm060543m
  12. H. Y. Kweon, S. H. Park and J. H. Yeo, J. Appl. Polym. Sci., 80(10), 1848-1853 (2001). https://doi.org/10.1002/app.1281
  13. K. Kesenci, A. Motta, L. Fambri and C. Migliaresi, J. Biomater. Sci., Polym. Ed., 12(3), 337-351 (2001). https://doi.org/10.1163/156856201750180852
  14. K. Y. Lee, FIBER POLYM, 2, 71-74 (2001). https://doi.org/10.1007/BF02875261
  15. P. J. Kim UJ, H. J. Kim, M. Wada and D. L. Kaplan, Biomaterials, 26, 2775-2785 (2005). https://doi.org/10.1016/j.biomaterials.2004.07.044
  16. P. Petrini, C. Parolari and M. C. Tanzi, J. Mater. Sci.: Mater. Med., 12(10-12), 849-853 (2001). https://doi.org/10.1023/A:1012847301850
  17. Y. Tsuboi, T. Ikejiri, S. Shiga, K. Yamada and A. Itaya, Appl. Phys. A: Mater. Sci. Process., 73(5), 637-640 (2001). https://doi.org/10.1007/s003390100984