DOI QR코드

DOI QR Code

Analysis of E,E-farnesol and squalene in makgeolli using stir bar sorptive extraction coupled with gas chromatography-mass spectrometry

SBSE-GCMS를 이용한 막걸리 중의 E,E-farnesol과 squalene분석법

  • Ha, Jaeho (Food Analysis Center, Korea Food Research Institute) ;
  • Shim, You-Shin (Food Analysis Center, Korea Food Research Institute) ;
  • Cho, Yongsun (Food Analysis Center, Korea Food Research Institute) ;
  • Seo, Dongwon (Food Analysis Center, Korea Food Research Institute) ;
  • Jang, Hyewon (Food Analysis Center, Korea Food Research Institute) ;
  • Jang, Hyejin (Food Analysis Center, Korea Food Research Institute)
  • 하재호 (한국식품연구원 식품분석센터) ;
  • 심유신 (한국식품연구원 식품분석센터) ;
  • 조용선 (한국식품연구원 식품분석센터) ;
  • 서동원 (한국식품연구원 식품분석센터) ;
  • 장혜원 (한국식품연구원 식품분석센터) ;
  • 장혜진 (한국식품연구원 식품분석센터)
  • Received : 2014.01.03
  • Accepted : 2014.01.20
  • Published : 2014.02.25

Abstract

The aim of this study was to establish an analytical method for the determination of E,E-farnesol and squalene in makgeolli, which is a traditional type of Korean fermented rice wine. E,E-farnesol and squalene in makgeolli were extracted using stir bar sorptive extraction (SBSE) coupled with gas chromatography-mass spectrometry. SBSE was found to be an effective method for analyzing the E,E-farnesol and squalene levels in makgeolli. The linear dynamic range of the SBSE method for detecting E,E-farnesol and squalene ranged from 0.5 to 200 ng/mL with $R^2=0.9974$ for E,E-farnesol and 100 to 50000 ng/mL with $R^2=0.9982$ for squalene. The limit of detection and the limit of quantification using the SBSE method were 0.1 and 0.5 ng/mL for E,E-farnesol and 15.0 and 40.0 ng/mL for squalene, respectively. The average recoveries obtained were, quantitatively, 101-107% for E,E-farnesol and 98-103% for squalene, respectively, supporting the accuracy of the SBSE-GCMS method.

Keywords

makgeolli;E,E-farnesol;squalene;SBSE-GCMS

Acknowledgement

Supported by : Korea Food Research Institute

References

  1. J. Y. Kim and Y. H. Yi, Korean J. Food Sci. Technol., 42(6), 727-732 (2010).
  2. J. H. Park, S. M. Bae, C. Yook and J. S. Kim, Korean J. Food Sci. Technol., 36(4), 609-615 (2004).
  3. S. J. Lee and K. G. Lee, J. Sci. Food Agr., 88(4), 690-698 (2008). https://doi.org/10.1002/jsfa.3137
  4. J. Ha, Y. Wang, H. Jang, H. Seog and X. Chen, Food Chem., 142(1), 79-86 (2014). https://doi.org/10.1016/j.foodchem.2013.07.038
  5. J. H. Joo, G. Liao, J. B. Collins, S. F. Grissom and A. M. Jetten, Cancer Res., 67(16), 7929-7936 (2007). https://doi.org/10.1158/0008-5472.CAN-07-0931
  6. S. Y. Lim and S. W. Park, Yakhak Hoeji, 50(6), 372-380 (2006).
  7. T. P. Ong, R. Heidor, A. de Conti, M. L. Z. Dagli and F. S. Moreno, Carcinogenesis, 27(6), 1194-1203 (2006). https://doi.org/10.1093/carcin/bgi291
  8. J. A. McAnally, M. Jung and H. Mo, Cancer Lett., 202(2), 181-192 (2003). https://doi.org/10.1016/j.canlet.2003.08.008
  9. J. H. Joo and A. M. Jetten, Cancer Lett., 287(2), 123-135 (2010). https://doi.org/10.1016/j.canlet.2009.05.015
  10. D. Grigoriadou, A. Androulaki, E. Psomiadou and M. Z. Tsimidou, Food Chem., 105(2), 675-680 (2007). https://doi.org/10.1016/j.foodchem.2006.12.065
  11. P. Bhattacharjee, V. B. Shukla, R. S. Singhal and P. R. Kulkarni, World J. Microb. Biot., 17(8), 811-816 (2001). https://doi.org/10.1023/A:1013573912952
  12. H. T. Lu, Y. Jiang and F. Chen, J. Chromatogr. A, 994(1-2), 37-43 (2003). https://doi.org/10.1016/S0021-9673(03)00454-0
  13. J. Villen, G. P. Blanch, M. Ruiz del Castillo and M. Herraiz, J. Agr. Food Chem., 46(4), 1419-1422 (1998). https://doi.org/10.1021/jf970706l
  14. C. Samaniego-Sanchez, J. J. Quesada-Granados, H. Lopez-Garcia de la Serrana and M. C. Lopez-Martinez, J. Food Compos. Anal., 23(7), 671-676 (2010). https://doi.org/10.1016/j.jfca.2010.03.010
  15. N. Nenadis and M. Tsimidou, J. Am. Oil Chem. Soc., 79(3), 257-259 (2002). https://doi.org/10.1007/s11746-002-0470-1
  16. M. Mestres, O. Busto and J. Guasch, J. Chromatogr. A, 881(1-2), 569-581 (2000). https://doi.org/10.1016/S0021-9673(00)00220-X
  17. P. Chuenchomrat, A. Assavanig and S. Lertsiri, ScienceAsia, 34, 199-206 (2008). https://doi.org/10.2306/scienceasia1513-1874.2008.34.199
  18. S. Insa, E. Antico and V. Ferreira, J. Chromatogr. A, 1089(1-2), 235-242 (2005). https://doi.org/10.1016/j.chroma.2005.06.061
  19. R. F. Alves, A. M. D. Nascimento and JMF Nogueira. Anal. Chim. Acta, 546(1), 11-21 (2005). https://doi.org/10.1016/j.aca.2005.05.012
  20. R. Perestrelo, J. M. F. Nogueira and J. S. Camara, Talanta, 80(2), 622-630 (2009). https://doi.org/10.1016/j.talanta.2009.07.038
  21. R. Delgado, E. Duran, R. Castro, R. Natera and C. G. Barroso, Anal. Chim. Acta, 672(1-2), 130-136 (2010). https://doi.org/10.1016/j.aca.2010.05.015
  22. D. J. Caven-Quantrill and A. J. Buglass, J. Chromatogr. A, 1218(7), 875-881 (2011). https://doi.org/10.1016/j.chroma.2010.12.078
  23. J. Marin, A. Zalacain, C. De Miguel, G. L. Alonso and M. R. Salinas, J. Chromatogr. A, 1098(1-2), 1-6 (2005). https://doi.org/10.1016/j.chroma.2005.07.126
  24. C. D. Poulter and H. C. Rilling, 'Biosynthesis of isoprenoid compounds', 1st Ed., Vol. 1, p455, John Wiley & Sons, Inc., New York, 1981.
  25. M. Keller, D. Hafenbradl, K. O. Stetter, G. Teller, Y. Nakatani and G. Ourisson, Angew. Chem. Int. Edit., 34(17), 1898-1900 (1995). https://doi.org/10.1002/anie.199518981

Cited by

  1. Analysis of the Physicochemical Characteristics and Sensory Properties in Makgeolli vol.27, pp.5, 2017, https://doi.org/10.17495/easdl.2017.10.27.5.491
  2. ) by solvent extraction coupled with gas chromatography-mass spectrometry vol.21, pp.1, 2018, https://doi.org/10.1080/10942912.2017.1414841