Study of Mori Fructus and Dried Mori Fructus Extracts on the Antioxidant Effect and the Inhibitory Effect on Adipocyte Differentiation

상심자와 건조상심자 추출물의 항산화 효과 및 전지방세포 분화억제 효과에 관한 연구

  • Received : 2014.09.17
  • Accepted : 2014.10.13
  • Published : 2014.10.31

Abstract

Objectives This study was to investigate the antioxidative capacity, antiobesity effect and anti-diabetes effects of Mori Fructus and dried Mori Fructus in Raw 264.7 cells and 3T3-L1 cells. Methods 3 different types of Mori Fructus extracts (water 100%, ethanol 30%, ethanol 100%) were used in this study. And 3 different types of dried Mori Fructus extracts (water 100%, ethanol 30%, ethanol 100%) were used in this study. Total polyphenol compund, total favonoid compound, DPPH radical scavenging, ROS activity, NO, cell proliferation were measured in the experiment. Expressions of adipogenic transcription factors including $C/EBP-{\alpha}$, $C/EBP-{\beta}$, $PPAR-{\alpha}$, $PPAR-{\gamma}$, $AMPK-{\alpha}$ were analyzed by Real time PCR. Results Mori Fructus extracts measurements are higher than dried Mori Fructus extracts measurements at Total flavonoid compound and total flavonoid compound. Mori Fructus extracts measurements are lower than dried Mori Fructus extracts measurements at DPPH radical scavenging, ROS activity, NO. In RT-PCR analysis, there is a tendency that dried Mori Fructus extracts inhibit the expression of $C/EBP-{\alpha}$, $C/EBP-{\beta}$ genes. In RT-PCR analysis, there is a tendency that dried Mori Fructus extracts promote the expression of $PPAR-{\alpha}$, $PPAR-{\gamma}$, $AMPK-{\alpha}$ genes. Conclusions Mori Fructus is effective on inhibiting the oxidation and dried Mori Fructus is effective on inhibiting the obesity and diabetes.

Keywords

Mori Fructus;Dried Mori Fructus;Antioxidative;Antiobesity;Adipocyte differentiation

References

  1. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104:531-43. https://doi.org/10.1016/S0092-8674(01)00240-9
  2. Soon JY. Pharmacological treatment of obesity. J Korean Soc Endocrinol. 2008;23:223-33. https://doi.org/10.3803/jkes.2008.23.4.223
  3. KFDA. Suspension of sale on Sibutramine [Internet]. Cheongwon: KFDA; c2013 [cited 2013 May 27]. Available from:http://www.kfda.go.kr/antidrug/index.do?nMenuCode=53&mode=view&boardSeq=2367.
  4. Halliwell B and Gutteridge JMC. Free radicals in Biology and Medicine (3rd ed). Oxford, Oxford University Press. 1999:1-321.
  5. Chung HY. Aging and Carcinogenic Mechanisms Induced by Free Fadicals. Kor J Gerontol. 1992;2:1-11.
  6. Virag L, Szabo E, Gergely P and Szabo C. Peroxynitrite induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett. 2003;140-1:113-124. https://doi.org/10.1016/S0378-4274(02)00508-8
  7. Balavoine GGA and Geletii YV. Peroxynitrite scavenging by different antioxidants. Part 1: convenient assay, Nitric Oxide. 1999;3(1):40-54. https://doi.org/10.1006/niox.1999.0206
  8. Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA and Darley-Usmar VM. Biological aspects of reactive nitrogen species. Biochim Biophys Acta. 1999;1411(2-3):385-400. https://doi.org/10.1016/S0005-2728(99)00028-6
  9. Harman D. Free radical theory of aging ; Role of free radicals in the organization and evolution of life, aging and disease processes. Free Radicals, Aging and Degenerative Disease(ed. Johnson, J.E et al), alan R. Liss.Inc. New York. 1986:3-49.
  10. 張文彭 外. 淸宮長春丹對老年腎虛證血漿過氧化脂質高密度脂蛋白膽固醇水平影響的硏究. 中醫雜誌. 1989;30(3):34-8.
  11. Batteli NG, Lorenzoni E and Stripe F. Milk xanthine oxidase type D(dehydrogenase) and type O(oxydase) : Purification and interconversion and some properties. Biochem. J. 1973;131:191-8. https://doi.org/10.1042/bj1310191
  12. Simon RH, Scogging CM and Patterson D. Hydrogen peroxide cause the fatal injury to human fibroblast exposed to the oxygen radicals. J. Biol. Chem. 1981;266:7181-6.
  13. 李尙仁. 本草學. 서울:醫藥社. 1981:135.
  14. 두호경. 東醫腎系學. 서울:동양의학연구원. 1993:10, 11, 1266, 1272-5, 1327-9.
  15. 王其飛. 中醫長壽學. 遼寧:遼寧科學技術出版社. 1989:340-2.
  16. Konno K, Ono H, Nakamura M, Tateishi K, Hirayama C, Tamura Y, Hattori M, Koyama A and Kohno K. Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. roc. Natl. Acad. Sci. 2006;103:1337-41. https://doi.org/10.1073/pnas.0506944103
  17. Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH and Moon JO. In-vitro and in-vivo anti-inflammatory effect of oxyresveratrol from Morus alba L.. J Pharm. Pharmacol. 2003;55:1695-1700. https://doi.org/10.1211/0022357022313
  18. Zou, T. B., Wang, M., Gan, R. Y. and Ling, W. H. (2011) Optimization of ultrasound-assisted extraction of anthocyanins from mulberry, using response surface methodology. Int. J. Mol. Sci. 12: 3006-3017. https://doi.org/10.3390/ijms12053006
  19. Chen PN, Chu SC, Chiou HL, Kuo WH, Chiang CL and Hsieh YS. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett. 2006;235:248-59. https://doi.org/10.1016/j.canlet.2005.04.033
  20. Kim HB and Kim SL. Identification of C3G(cyanidin-3-glucoside) from mulberry fructus and quantification with defferent varieties. Korean J. seric. Sci. 2003;45:90-5.
  21. Abd-El-Mawla AM, Mohamed KM and Mostafa AM. Induction of biologically active flavonoids in cell cultures of Morus nigra and testing their hypoglycemic efficacy. Sci. Pharm. 2011;79:951-61. https://doi.org/10.3797/scipharm.1101-15
  22. Kobayashi Y, Miyazawa M, Kamei A, Abe K and Kojima T. Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci. Biotechnol. Biochem. 2010;74:2385-95. https://doi.org/10.1271/bbb.100392
  23. Kim HB, Kim SL and Kang SW. Varietal analysis and quantification of amino acid in mulberry fructus. Korean J. Seric. Scl. 2004;46:47-53.
  24. Imran M, Khan H, Shah M, Khan R and Khan F. Chemical composition and antioxidant activity of certain Morus species. J. Zhejiang Univ. Sci. B. 2011;11:973-80.
  25. Jin YS, Kim MK, Heo SI, Han W and Wang MH. Identification and properties of 2,5-dihydroxy-4,3'-di(beta-D-glucopyranosyloxy)-transstilbene from Morus bombycis Koidzumi roots. Phytother. Res. 2007;21:605-8. https://doi.org/10.1002/ptr.2121
  26. Bae SH and Suh SJ. Antioxidant activities of five different mulberry cultivars in Korea. Food Sci. and Tech. 2007;40:955-62.
  27. Kim SY, Park KJ and Lee WC. Antiimflammatory and antioxidative effects of Morus spp. fructus extract. Korean J. Med. Corp. Sci. 1998;6:204-9.
  28. Kimura T, Nakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, Oita S, Oikawa S and Miyazawa T. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of post prandial blood glucose in humans. J. Agric. Food Chem. 2007;55:5869-74. https://doi.org/10.1021/jf062680g
  29. Park MY, Lee KS and Sung MK. Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-alpha, PPAR-gamma, and LPL mRNA expressions. Life Sci. 2005;77:3344-54. https://doi.org/10.1016/j.lfs.2005.05.043
  30. Kim HB, Kim SY, Ryu KS, Lee WC and Moon JY. Effect of methanol extracts from mulberry fructus on the lipid metalbolism and liver function in cholesterolinduced hyperlipidemia rats. Korean J. Seri. Sci. 2001;42:104-8.
  31. 두호경. 동의신계학. 서울:동양의학연구원. 1993:10-1, 1266, 1272-5, 1327-9.
  32. Harman D. Free radical theory of aging ; Role of free radicals in the organization and evolution of life, aging and disease processes. Free Radicals, Aging and Degenerative Disease(ed. Johnson, J.E et al), alan R. Liss.Inc. New York. 1986:3-49.
  33. 張文彭. 淸宮長春丹對老年腎虛證血漿過.化脂質高密度脂蛋白膽固醇水平影響的硏究. 中醫雜誌. 1989;30(3):34-8.
  34. Batteli NG, Lorenzoni E and Stripe F. Milk xanthine oxidase type D(dehydrogenase) and type O(oxydase) : Purification and interconversion and some properties. Biochem. J. 1973;131:191-8. https://doi.org/10.1042/bj1310191
  35. Simon RH, Scogging CM and Patterson D. Hydrogen peroxide cause the fatal injury to human fibroblast exposed to the oxygen radicals. J. Biol. Chem. 1981;266:7181-6.
  36. 이지영, 윤은선, 박수현, 강현식, 안의수. UCP2 유전자다형이 일반인과 비만인의 비만지표, 심폐체력 그리고 비만 관련 대사 증후군에 미치는 영향. 성균관대학교. 운동영양학회지. 2004;8(3):347-54.
  37. 안원근. 노화과정에 있어서 P21 유전자의 역할. 생화학뉴스. 2003;23(2):80-1.
  38. 여에스더. 폐경기 노화와 비만. 대한비만학회지. 2002;11(3):294.
  39. 王其飛, 王瑞廷. 中醫長壽學. 遼寧科學技術出版社. 1989:340-2.
  40. 장보윤, 김선범, 이미경, 김성연. 상심자의 급성독성에 관한 연구. 생약학회지. 2012;43(2):179-83.
  41. 박용기, 강병수. 상심자의 항산화 작용에 관한 연구. 대한 본초학회지. 1999;14(2):43-50.
  42. 박병철. 상심자의 항산화 효과 및 3T3-L1 세포주의 유전자 발현과 cytokine에 미치는 영향. 상지대학교 대학원. 2006:1-46.
  43. 이병규, 김성훈. 비만의 개념 및 변증시치에 관한 문헌적 고찰. 대전대학교 한의학연구소 논문집. 1998;7(1):533-41.
  44. 안형수, 이태영, 이창현, 이광규, 이상룡. 수종의 한약재가 비만 백서의 혈청변화에 미치는 영향. 동의생리병리학회지. 2001;15(4):537-42.
  45. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev 2000;14:1293-307.
  46. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawda T, Lim BO, Ki D. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci. 2004;75:3195-203. https://doi.org/10.1016/j.lfs.2004.06.012
  47. Cowherd RM, Lyle RE, McGehee RE Jr. Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol. 1999;10:3-10. https://doi.org/10.1006/scdb.1998.0276
  48. Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Annu Rev Nutr. 1994;14:99-129. https://doi.org/10.1146/annurev.nu.14.070194.000531
  49. Morrison RF, Farmer SR. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr. 2000;130:3116S-21S.
  50. Rosen ED, Macdougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7:885-96. https://doi.org/10.1038/nrm2066
  51. Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou JP, Staels B, Auwerx J, Laville M and Vidal H. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes, 1997;46(8):1319-27. https://doi.org/10.2337/diab.46.8.1319
  52. Guo W, Huang N, Cai J, Xie W and Hamilton JA. Fatty acid transport and metabolism in HepG2 cells. Am J Physiol Gastrointest Liver Physiol, 2006;290(3):528-34. https://doi.org/10.1152/ajpgi.00386.2005
  53. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G and Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992; 68(5):879-87. https://doi.org/10.1016/0092-8674(92)90031-7
  54. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briqqs M, Deeb S, Staels B and Auwerx J. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996;15(19): 5336-48.
  55. Vu-Dac N, Chopin-Delannoy S, Gervois P, Bonnelye E, Martin G, Fruchart JC, Laudet V and Staels B. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J Biol Chem. 1998;273(40):25713-20. https://doi.org/10.1074/jbc.273.40.25713
  56. Rossen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM. PPAR gamma is required for the differentiatio of adipose tissue in vivo and in vitro. Mol Cell. 1999;4:611-7. https://doi.org/10.1016/S1097-2765(00)80211-7
  57. Lee KH, Jeong HS, Choi KY, Kim, Lee DS, Kang GY, Jeon HJ. PAssociation Study of the Peroxisome Proliferators-Activated Receptor ${\gamma}2$ Pro12Ala Polymorphism with Diabetic Nephropathy. Diabetes. 2008;32:402-8.
  58. Rossen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM. PPAR gamma is required for the differentiatio of adipose tissue in vivo and in vitro. Mol Cell. 1999;4:611-7. https://doi.org/10.1016/S1097-2765(00)80211-7
  59. Nammi S, Sreemantula S and Roufogalis BD. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic. Clin. Pharmacol. Toxicol. 2009;104:366. https://doi.org/10.1111/j.1742-7843.2008.00362.x
  60. Kola B, Grossman AB and Korbonits M. The role of AMP-activated protein kinase in obesity. Front Horm. Res. 2008;36:198.
  61. Yano W, Kubota N, Itoh S, Kubota T, Awazawa M, Moroi M, Sugi K, Takamoto I, Ogata H, Tokuyama K, Noda T, Terauchi Y, Ueki K and Kadowaki T. Molecular mechanism of moderate insulin resistance in adiponectin-knockout mice. Endocr. J. 2008;55:515. https://doi.org/10.1507/endocrj.K08E-093
  62. Janovska A, Hatzinikolas G, Staikopoulos V, McInerney J, Mano M and Wittert GA. AMPK and ACC phosphorylation: Effect of leptin, muscle fibre type and obesity. Mol. Cell. Endocrinol. 2007;284:1.
  63. Pang J, Choi Y and Park T. Ilex paraguariensis extract ameliorates obesity induced by high-fat diet: potential role of AMPK in the visceral adipose tissue. Arch. Biochem. Biophys. 2008;476:178. https://doi.org/10.1016/j.abb.2008.02.019
  64. Landree LE, Hanlon AL, Strong DW, Rumbaugh G, Miller IM, Thupari JN, Connolly EC, Huganir RL, Richardson C, Witters LA, Kuhajda FP and Ronnett GV. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism. J. Biol. Chem. 2004;279:3817. https://doi.org/10.1074/jbc.M310991200

Acknowledgement

Supported by : 보건산업진흥원