Anti-inflammatory Activity of Perilla frutescens Britton Seed in RAW 264.7 Macrophages and an Ulcerative Colitis Mouse Model

RAW 264.7 대식세포와 궤양성 대장염 마우스 모델에서의 들깨의 항염증 효과

  • Lee, Yuna (Department of Food and Nutrition, Chungbuk National University) ;
  • Song, Boram (Department of Food and Nutrition, Chungbuk National University) ;
  • Ju, Jihyeung (Department of Food and Nutrition, Chungbuk National University)
  • 이유나 (충북대학교 식품영양학과) ;
  • 송보람 (충북대학교 식품영양학과) ;
  • 주지형 (충북대학교 식품영양학과)
  • Received : 2013.05.22
  • Accepted : 2013.10.27
  • Published : 2014.02.28


This study aimed to investigate the anti-inflammatory activities of raw (P) and roasted (RP) Perilla frutescens Britton (perilla) seeds in RAW 264.7 macrophages and an ulcerative colitis mouse model. In lipopolysaccharide-treated RAW 264.7 cells, treatment with ethanol extract of P at the concentrations of 75 and $150{\mu}g/mL$ decreased nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) levels to 48-85% of the control (p<0.01). Treatment with RP extract exhibited similar effects on NO, IL-6, and TNF-${\alpha}$, decreasing those levels to 51-84% of the control (p<0.01). In dextran sulfate sodium-treated ulcerative colitis mice, dietary treatment with 1% RP for 7 days decreased the colonic levels of prostaglandin $E_2$ and leukotriene $B_4$ to 34% and 58% of the control, respectively (p<0.05). Dietary P treatment, however, did not decrease those levels significantly. These results indicate that roasted perilla seed exerts anti-inflammatory activity both in vitro and in vivo.


perilla seed;roasting;inflammatory mediator;RAW 264.7 macrophage;dextran sulfate sodium-treated mouse


Supported by : 한국연구재단


  1. Lee CB. Coloured Flora of Korea. 1st ed. Hyang Mun Sa, Seoul, Korea. p. 140 (2003)
  2. Kim TJ. Korean Resources Plants. Seoul National University Publisher, Seoul, Korea. p. 60 (1996)
  3. Park JH, Yang CB. Studies on the removal of phytate from korean perilla (perilla ocimoides, L.) protein. Korean J. Food Sci. Technol. 22: 343-349 (1990)
  4. MHW. Korea health statistics: Korea national health and nutrition examination survey (KNHANES) V-1. Ministry of Health & Welfare, Seoul, Korea. pp. 345-348 (2010)
  5. Shin HS, Kim SW. Lipid composition of perilla seed. J. Am. Oil Chem. Soc. 71: 619-622 (1994)
  6. National Academy of Agricultural Science. Food composition Table. 8th ed. Rural Development Administration, Suwon, Korea. p. 100 (2011)
  7. Okuno M, Kajiwara K, Imai S, Kobayashi T, Honma N, Maki T, Suruga K, Goda T, Takase S, Muto Y, Moriwaki H. Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. J. Nutr. 127: 1752-1757 (1997)
  8. Park DS, Lee KI, Park KY. Quantitative analysis of dietary fibers from perilla frutescens seeds and antimutagenic effect of its extracts. J. Korean Soc. Food Sci. Nutr. 30: 900-905 (2001)
  9. Lee HA, Han JS. Anti-inflammatory effect of perilla frutescens (L.) Britton var. frutescens extract in LPS-stimulated raw 264.7 macrophages. Prev. Nutr. Food Sci. 17: 109-115 (2012)
  10. Kim KH. Antioxidative effect of various solvent extracts from roasted perilla oil. Woosong Review 8: 1-11 (2003)
  11. Narisawa T, Takahashi M, Kotanagi H, Kusaka H, Yamazaki Y, Koyama H, Fukaura Y, Nishizawa Y, Kotsugai M, Isoda Y, Hirano J, Noritoshi N. Inhibitory effect of dietary perilla oil rich in the n-3 polyunsaturated fatty acid ${\alpha}$-linolenic acid on colon carcinogenesis in rats. Jpn. J. Cancer Res. 82: 1089-1096 (1991)
  12. Yoon SK, Kim JH, Kim ZU. Studies on antioxidant activity of ethanol extracts from defatted perilla flour. Korean J. Food Sci. Technol. 25: 160-164 (1993)
  13. Cho HS, Ahn MS. Antioxidative effect of phenolic acids in defatted perilla flour on soybean oil. Korean J. Food Cookery Sci. 15: 55-60 (1999)
  14. Um MY, Choi WH, An JY, Kim SR, Ha TY. Effect of defatted sesame and perilla methanol extracts on cognitive function and antioxidant activity in SAMP8 mice. Korean J. Food Sci. Technol. 36: 637-642 (2004)
  15. Djousse L, Pankow JS, Eckfeldt JH, Folsom AR, Hopkins PN, Province MA, Ellison RC. Relation between dietary linolenic acid and coronary artery disease in the national heart, lung, and blood institute family heart study. Am. J. Clin. Nutr. 74: 612-619 (2001)
  16. Rhie SG, Park YJ. Effect of the addition of defatted perilla on lipid metabolism in rats. J. Korean Soc. Food. Nutr. 20: 72-77 (1991)
  17. Paschos GK, Magkos F, Panagiotakos DB, Votteas V, Zampelas A. Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients. Eur. J. Clin. Nutr. 61: 1201-1206 (2007)
  18. Holy EW, Forestier M, Richter EK, Akhmedov A, Leiber F, Camici GG, Mocharla P, LUscher TF, Beer JH, Tanner FC. Dietary ${\alpha}$-linolenic acid inhibits arterial thrombus formation, tissue factor expression, and platelet activation. Arterioscler. Thromb. Vasc. Biol. 31: 1772-1780 (2011)
  19. Song JH, Park HS, Seo ES, Kim DY. Effect of different dietary fats on colon tumor incidence and in vivo cell proliferation in colonic mucosa of MNU-treated rats. Korean J. Nutr. 27: 552-562 (1994)
  20. Frankel EN, Huang SW, Aeschbach R, Prior E. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J. Agr. Food Chem. 44: 131-135 (1996)
  21. Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of japanese encephalitis. Antimicrob. Agents. Ch. 51: 3367-3370 (2007)
  22. Osakabe N, Yasuda A, Natsume M, Yoshikawa T. Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25: 549-557 (2004)
  23. Takano H, Osakabe N, Sanbongi C, Yanagisawa R, Inoue KI, Yasuda A, Natsume M, Baba S, Ichiishi EI, Yoshikawa T. Extract of perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp. Biol. Med. 229: 247-254 (2004)
  24. Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T. Rosmarinic acid, a major polyphenolic component of perilla frutescens reduces lipopolysaccharide (LPS)-induced liver injury in d-galactosamine (d-GalN)-sensitized mice. Free Radical Bio. Med. 33: 798-806 (2002)
  25. Furtado MA, de Almeida LC, Furtado RA, Cunha WR, Tavares DC. Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat. Res.-Gen. Tox. En. 657: 150-154 (2008)
  26. Chakraborty D, Mandal SM, Chakraborty J, Bhattacharyaa PK, Bandyopadhyay A, Mitra A, Gupta K. Antimicrobial activity of leaf extract of basilicum polystachyon (L) moench. Indian J. Exp. Biol. 45: 744-748 (2007)
  27. Tsai SJ, Yin MC. Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in PC12 cells. J. Food Sci. 73: 174-178 (2008)
  28. Hsu HY, Yang JJ, Lin CC. Effects of oleanolic acid and ursolic acid on inhibiting tumor growth and enhancing the recovery of hematopoietic system postirradiation in mice. Cancer Lett. 111: 7-13 (1997)
  29. Sohn KH, Lee HY, Chung HY, Young HS, Yi SY, Kim KW. Anti-angiogenic activity of triterpene acids. Cancer Lett. 94: 213-218 (1995)
  30. Medzhitov R. Origin and physiological roles of inflammation. Nature 454: 428-435 (2008)
  31. Yang SK, Yun S, Kim JH, Park JY, Kim HY, Kim YH, Chang DK, Kim JS, Song IS, Park JB, Park ER, Kim KJ, Moon G, Yang SH. Epidemiology of inflammatory bowel disease in the songpa-kangdong district. Seoul, Korea, 1986-2005: A KASID study. Inflamm. Bowel Dis. 14: 542-549 (2008)
  32. Coussens LM, Werb Z. Inflammation and cancer. Nature 420: 860-867 (2002)
  33. Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 83: 456S-460S (2006)
  34. Gismera CS, Aladren BS. Inflammatory bowel diseases: a disease (s) of modern times? Is incidence still increasing?. World J. Gastroenterol. 14: 5491-5498 (2008)
  35. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140: 1785-1794 (2011)
  36. Cabre E, Domenech E. Impact of environmental and dietary factors on the course of inflammatory bowel disease. World J. Gastroenterol. 18: 3814-3822 (2012)
  37. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [ISN] nitrate in biological fluids. Anal. Biochem. 126: 131-138 (1982)
  38. Willeaume V, Kruys V, Mijatovic T, Huez G. Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J. Inflamm. 46: 1-12 (1995)
  39. Hur SY. Macrophage stimulating activity of perila extract in vitro and in vivo. MS thesis. Sookmyung Women's University, Seoul, Korea (1997)
  40. Ee KY, Agboola S, Rehman A, Zhao J. In vitro antioxidant and bioactive properties of raw and roasted wattle (Acacia victoriae Bentham) seed extracts. Int. J. Food. Sci. Tech. 47: 2000-2008 (2012)
  41. Lee SW, Jeung MK, Park MH, Lee SY, Lee JH. Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chem. 118: 681-685 (2010)
  42. Dewanto V, Wu X, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agr. Food Chem. 50: 4959-4964 (2002)
  43. Paur I, Balstad TR, Blomhoff R. Degree of roasting is the main determinant of the effects of coffee on NF-${\kappa}B$ and EpRE. Free Radical Bio. Med. 48: 1218-1227 (2010)
  44. Perrone D, Farah A, Donangelo CM. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J. Agr. Food Chem. 60: 4265-4275 (2012)
  45. Kawada M, Arihiro A, Mizoguchi E. Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease. World J. Gastroenterol. 13: 5581-5593 (2007)
  46. Korea Rural Economic Institute. Food balance sheet. Korea Rural Economic Institute, Seoul, Korea. p. 11 (2011)
  47. Newmark HL. Nutrient density: an important and useful tool for laboratory animal studies. Carcinogenesis 8: 871-873 (1987)
  48. Amacher DE. A toxicologist's guide to biomarkers of hepatic response. Hum. Exp. Toxicol. 21: 253-262 (2002)
  49. Joshi VD. Anatomy and physiology for nursing and healthcare. BI Publications Pvt Ltd., Janpath, New Delhi, India. pp. 216-219 (2006)
  50. Herias MV, Koninkx JF, Vos JG, van Dijk JE. Probiotic effects of lactobacillus casei on DSS-induced ulcerative colitis in mice. Int. J. Food. Microbiol. 103: 143-155 (2005)
  51. Cho EJ, Shin JS, Noh YS, Cho YW, Hong SJ, Park JH, Lee JY, Lee JY, Lee KT. Anti-inflammatory effects of methanol extract of patrinia scabiosaefolia in mice with ulcerative colitis. J. Ethnopharmacol. 136: 428-435 (2010)
  52. Arafa HM, Hemeida RA, El-Bahrawy AI, Hamada FM. Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model. Food Chem. Toxicol. 47: 1311-1317 (2009)

Cited by

  1. Antioxidant Activities of Perilla frutescens Britton Seed Extract and Its Inhibitory Effects against Major Characteristics of Cancer Cells vol.44, pp.2, 2015,
  2. Synergistic Anti-inflammatory Effect of Rosmarinic Acid and Luteolin in Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells vol.47, pp.1, 2015,
  3. Potential anti-mutagenicity, antioxidant, and anti-inflammatory capacities of the extract from perilla seed meal pp.01458884, 2018,