DOI QR코드

DOI QR Code

The Effects of Several Halophytes on Insulin Resistance in Otsuka Long-evans Tokushima Fatty Rats

OLETF 쥐에서 칠면초와 세발나물의 인슐린 저항성 개선 효과

  • Received : 2013.09.17
  • Accepted : 2013.12.02
  • Published : 2014.02.28

Abstract

We evaluated preventive effects of Suaeda japonica (SJ) and Spergularia marina Griseb (SMG) on the insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. The 10-week old OLETF rats were fed diets containing 3% (w/w) SJ and SMG for 18 weeks. Fasting blood glucose levels in SJ and SMG groups, measured using the oral glucose tolerance test, were lower than that of the control rats. The SMG group showed significantly lower levels of insulin, glycated hemoglobin, triglyceride, and total cholesterol than the control group. In addition, these levels were relatively lower in the SJ group than those in the control rats. The SJ and SMG groups had relatively lower protein levels of nuclear factor-kappa B (NF-${\kappa}B$) p65 in adipose tissue and serine phosphorylated insulin receptor substrate 1 (IRS-1) in skeletal muscle than the control group. These results suggest that SJ and SMG prevent insulin resistance and SMG in particular reduces blood triglyceride and total cholesterol levels.

Keywords

halophyte;Suaeda japonica;Spergularia marina;insulin resistance;oxidative stress

References

  1. Gougeon R. Insulin resistance of protein metabolism in type 2 diabetes and impact on dietary needs: A review. Can. J. Diabetes 37: 115-120 (2013) https://doi.org/10.1016/j.jcjd.2013.01.007
  2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 33: S62-S69 (2010) https://doi.org/10.2337/dc10-S062
  3. Eyre H, Kahn R, Robertson RM. Preventing cancer, cardiovascular diseases, and diabetes. Diabetes Care 27: 1812-1824 (2004) https://doi.org/10.2337/diacare.27.7.1812
  4. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J. Diabetes 1: 68-75 (2010) https://doi.org/10.4239/wjd.v1.i3.68
  5. Lokhande VH, Suprasanna P. Prospects of halophytes in understanding and managing abiotic stress tolerance. pp. 29-56. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Parvaiz A, Prasad, MNV. (eds.). Springer, New York (2012)
  6. Cuerda C, Luengo LM, Valero MA, Vidal A, Burgos R, Calvo FL, Martínez C. Antioxidants and diabetes mellitus: Review of the evidence. Nutr. Hosp. 26: 68-78 (2011)
  7. Kim SS, Son SM. Oxidative stress and cell dysfunction in diabetes: Role of ROS produced by mitochondria and NAD(P)H oxidase. Korean Diabetes J. 32: 389-398 (2008) https://doi.org/10.4093/kdj.2008.32.5.389
  8. Singh RB, Choudhury J, Meester FD, Wilson DW. Development of the Mediterranean soup for enteral nutrition and for prevention of cardiovascular diseases. Open Nutraceut. J. 5: 90-98 (2012) https://doi.org/10.2174/1876396001205010090
  9. Parida AK, Das AB. Salt tolerance and salinity effects on plants. Ecotoxicol. Environ. Safety 60: 324-349 (2005) https://doi.org/10.1016/j.ecoenv.2004.06.010
  10. Ksouri R, Ksouri WM, Jallali I, Debez A, Magne C, Hiroko I, Abdelly C. Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 32: 289-326 (2012) https://doi.org/10.3109/07388551.2011.630647
  11. Lee HJ, Kim YA, Ahn JW, Lee BJ, Moon SG, Seo YW. Screening of peroxynitrite and DPPH radical scavenging activities from salt marsh plants. Korean J. Biotechnol. Bioeng. 19: 57-61 (2004)
  12. Lee BM, Shim SI, Lee SK, Kang BH, Chung IM, Kim KH. Physiological response on saline tolerance between halophytes and glycophytes. Korean J. Environ. Agr. 18: 61-65 (1999)
  13. Park SH, Kim KS. Isolation and identification of antioxidant flavonoids from Salicornia herbacea L. J. Korean Soc. Appl. Biol. Chem. 47: 120-123 (2004)
  14. Lee YS, Lee SH, Kim BK, Oguchi K, Shin KH. Inhibitory effects of isorhamnetin-3-O-${\beta}$-D-glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biol. Pharm. Bull. 28: 916-918 (2005) https://doi.org/10.1248/bpb.28.916
  15. Ha JA, Lee SH, Kim HJ, Lee JY. The role of Salicornia herbacea in ovariectomy-induced oxidative stress. Biol. Pharm. Bull. 29: 1305-1309 (2006) https://doi.org/10.1248/bpb.29.1305
  16. Kong CS, Kim YA, Kim MM, Park JS, Kim JA, Kim SK, Lee BJ, Nam YW. Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol. in Vitro 22: 1742-1748 (2008) https://doi.org/10.1016/j.tiv.2008.07.013
  17. Chung YC, Chun HK, Yang JY, Kim JY, Han EH, Kho YH, Jeong HG. Tungtungmadic acid, a novel antioxidant, from Salicornia herbacea. Arch. Pharm. Res. 28: 1122-1126 (2005) https://doi.org/10.1007/BF02972972
  18. Kim JY, Cho JY, Ma YK, Park KY, Lee SH, Ham KS, Lee HJ, Park KH, Moon JH. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 125: 55-62 (2011) https://doi.org/10.1016/j.foodchem.2010.08.035
  19. Kim JA, Choo YS, Lee IJ, Bae JJ, Kim IS, Choo BH, Song SD. Adaptations and physiological characteristics of three Chenopodiaceae species under saline environments. Korean J. Ecol. 25: 101-107 (2002) https://doi.org/10.5141/JEFB.2002.25.2.101
  20. Choi JI, Kim YJ, Kim JH, Song BS, Yoon Y, Byun MW, Kwon JH, Chun SS, Lee JW. Antioxidant activities of the extract fractions from Suaeda japonica. J. Korean Soc. Food Sci. Nutr. 38: 131-135 (2009) https://doi.org/10.3746/jkfn.2009.38.2.131
  21. Cho JY, Yang X, Park KH, Park HJ, Park SY, Moon JH, Ham KS. Isolation and identification of antioxidative compounds from Suaeda japonica and their antioxidative activities. Food Sci. Biotechnol. 22: 1547-1557 (2013) https://doi.org/10.1007/s10068-013-0250-2
  22. Kim JH, Song JY, Lee JM, Oh SH, Lee HJ, Choi HJ, Go JM, Kim YH. A study on physiochemical property of Salicornia herbacea & Suaeda japonica. J. Fd. Hyg. Safety 25: 170-179 (2010)
  23. Kim JS, Lee SH, Son EM, Pan X, Kim YA, Lee GS, Seo YW, Lee BJ. Phytochemical constituents of Suaeda japonica Makino. J. Crop Sci. 50: 208-210 (2005)
  24. Hayakawa K, Agarie S. Physiological roles of betacyanin in a halophyte, Suaeda japonica Makino. Plant Prod. Sci. 13: 351-359 (2010) https://doi.org/10.1626/pps.13.351
  25. Heo BK, Park YJ, Park YS, Im MH, Oh KT, Cho JY. Distribution status, physicochemical composition, and physiological activity of Spergularia marina cultivated in the western region in Jeon-Ra-Nam-Do. Korean J. Commun. Living Sci. 20: 181-191 (2009)
  26. Hajnal A, Covasa M, Bello NT. Altered taste sensitivity in obese, prediabetic OLETF rats lacking CCK-1 receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289: R1675-R1686 (2005) https://doi.org/10.1152/ajpregu.00412.2005
  27. Reeves PG, Nielsen FH, Fahey FC Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123: 1939-1951 (1993)
  28. Ledwozyw A, Michalak J, Stepian A, Kadziolka A. The relationship between plasma TG, cholesterol, total lipid peroxidation product during human atherosclerosis. Clin. Chim. Acta 155: 272-284 (1986)
  29. Krishnamurti U, Steffes MW. Glycohemoglobin: a primary predictor of the development or reversal of complications of diabetes mellitus. Clin. Chem. 47: 1157-1165 (2001)
  30. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 284-254 (1976)
  31. Hong EG, Noh HL, Lee SK, Chung YS, Lee KW, Kim HM. Insulin and glucagon secretions, and morphological change of pancreatic islets in OLETF rats, a model of typ 2 diabetes. J. Korean Med. Sci. 17: 34-40 (2002) https://doi.org/10.3346/jkms.2002.17.1.34
  32. Lind M, Oden A, Fahlen M, Eliasson B. A systematic review of HbA1c variables used in the study of diabetic complications. Diabetes Metabol. Syndr.: Clin. Res. Rev. 2: 282-293 (2008) https://doi.org/10.1016/j.dsx.2008.04.006
  33. Muoio DM, Newgard CB. Molecular and metabolic mechanisms of insulin resistance and ${\beta}$-cell failure in type 2 diabetes. Mol. Cell Biol. 9: 193-205 (2008)
  34. Hossain MA, Kitagaki S, Nakano D, Nishiyama A, Funamoto Y, Matsunaga T, Tsukamoto I, Yamaguchi F, Kamitori K, Dong Y, Hirata Y, Murao K, Toyoda Y, Tokuda M. Rare sugar D-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biochem. Biophys. Res. Commun. 405: 7-12 (2011) https://doi.org/10.1016/j.bbrc.2010.12.091
  35. Sheng TX, Yang KJ. Adiponectin and its association with insulin resistance and type 2 diabetes. J. Genet. Genomics 35: 321-326 (2008) https://doi.org/10.1016/S1673-8527(08)60047-8
  36. Satoh N, Naruse M, Usui T, Tagami T, Suganami T, Yamada K, Kuzuya H, Shimatsu A, Ogawa Y. Leptin-to-adiponectin ratio as a potential atherogenic index in obese 2 diabetic patients. Diabetes Care 27: 2488-2490 (2004) https://doi.org/10.2337/diacare.27.10.2488
  37. Tomomi M, Masamistu N, Masanari M, Yakari D, Muhtashan SM, Muneki T, Nozoe S, Hsoda H, Kangawa K, Matsukura S. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J. Clin. Endocrinol. Metab. 87: 240-244 (2002) https://doi.org/10.1210/jcem.87.1.8129
  38. Weyer C, Funahashi T, Tanaka S, Hotta K, matsuzawa Y, Pratley RE, Tataranni PA. hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86: 1930-1935 (2001) https://doi.org/10.1210/jcem.86.5.7463
  39. Munzberg H, Bjornholm M, Bates SH, Myers MG. Leptin receptor action and mechanism of leptin resistance. Cell. Mol. Life Sci. 62: 642-652 (2005) https://doi.org/10.1007/s00018-004-4432-1
  40. Myers MG, Cowley MA, Munzberg H. Mechanisms of leptin action and leptin resistance. Ann. Rev. Physiol. 70: 537-556 (2008) https://doi.org/10.1146/annurev.physiol.70.113006.100707
  41. Ishii S, Kamegai J, Tamura H, Shimizu T, Sugihara H, Oikawa S. Role of ghrelin in streptozotocin-induced diabetic hyperphagia. Endocrinol. 143: 4934-4934 (2002) https://doi.org/10.1210/en.2002-220612
  42. Borggrev SE, De Vries R, Dullaart RPF. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin: cholesterol acyltransferase and lipid transfer proteins. Eur. J. Clin. Invest. 33: 1051-1069 (2003) https://doi.org/10.1111/j.1365-2362.2003.01263.x
  43. Ginberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch. Med. Res. 36: 232-240 (2005) https://doi.org/10.1016/j.arcmed.2005.01.005
  44. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Rad. Biol. Med. 50: 567-575 (2011) https://doi.org/10.1016/j.freeradbiomed.2010.12.006
  45. Mizuno T, Matsui H, Imamura A, Numaguchi Y, Sakai K, Murohara T, Okumura K. Insulin resistance increases circulating malondialdehyde-modified LDL and impairs endothel. Int. J. Cardiol. 97: 455-461 (2004) https://doi.org/10.1016/j.ijcard.2003.10.035
  46. Rial NS, Choi K, Ngugen T, Snyder B, Slepian MJ. Nuclear factor kappa B (NF-${\kappa}B$): A novel cause for diabetes, coronary artery disease and cancer initiation and promotion? Med. Hypotheses 78: 29-32 (2012) https://doi.org/10.1016/j.mehy.2011.09.034
  47. Danielsson A, Freddrik HN, Stralfors P. Phosphorylation of IRS1 at serine 307 and serine 312 in response to insulin in human adipocytes. Biochem. Biophys. Res. Commun. 342: 1183-1187 (2006) https://doi.org/10.1016/j.bbrc.2006.02.075
  48. Hilder TL, Janet CL. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle. FEBS Lett. 553: 63-67 (2003) https://doi.org/10.1016/S0014-5793(03)00972-4

Cited by

  1. Quality Characteristics and Antioxidant Activities of Noodles added with Spergularia marina L. Griseb Powder vol.27, pp.1, 2017, https://doi.org/10.17495/easdl.2017.2.27.1.50
  2. Quality characteristics of cookies added with Spergularia marina Griseb powder vol.22, pp.2, 2015, https://doi.org/10.11002/kjfp.2015.22.2.211
  3. Comparison of the Biological Activities of Electrodialysis-desalted Bioactive Compounds from the Halophyte Suaeda japonica vol.49, pp.2, 2016, https://doi.org/10.5657/KFAS.2016.0124
  4. A phenyl lipid alkaloid and flavone C-diglucosides from Spergularia marina vol.25, pp.1, 2016, https://doi.org/10.1007/s10068-016-0009-7
  5. Quality Properties of Sponge Cake with Added Spergularia marina griseb powder vol.31, pp.1, 2016, https://doi.org/10.7318/KJFC/2016.31.1.081
  6. Changes in Antioxidant and Cancer Cell Growth Inhibitory Activities of Spergularia marina Griseb Extract according to Different Cooking Methods vol.33, pp.6, 2017, https://doi.org/10.9724/kfcs.2017.33.6.673

Acknowledgement

Supported by : 농촌진흥청