Sub-bottom Profiling Algorithm using Parametric Array

파라메트릭 배열을 이용한 해저지층 탐사 알고리즘

Lee, Chong Hyun;Lee, Jaeil;Bae, Jinho

  • Received : 2014.01.14
  • Accepted : 2014.02.20
  • Published : 2014.02.28


In this paper, we propose an threshold-based Schur algorithm for estimating the media characteristics of sub-bottom multi-layers by using the signal generated by a parametric array transducer. We use the KZK model to generate a parametric array signal, and use the proposed threshold-based Schur algorithm for estimating the reflection coefficients of multiple sea bottom layers. Using computer simulation, we verify that the difference frequency component generated by the KZK model prevails over the signals of primary frequencies at long range. For the simulation, we use the transmit signal generated by the KZK and the reflected signal obtained from a lattice filter model for the seawater and sub-bottom of multi-level non-homogeneous layers. Through the simulation, we verify that the proposed threshold-based Schur algorithm can give much more accurate and efficient estimates of the reflection coefficients than methods using received signal, matched filter output signal, and normal Schur algorithm output.


Parametric array;KZK;Schur algorithm;Inverse scattering;Reflection coefficients;Sub-bottom


  1. Bruckstein, A.M., Kailath, T., 1987. Inverse Scattering for Discrete Transmission-line Models. SIAM Review, 29(3), 359-389.
  2. Alexander, S.T., 1986. Adaptive Signal Processing Theory and Applications. Springer-Verlag, New York.
  3. Bae, J., 2007. The Block Schur Algorithm for Designing Optical Multi-layered Structures. Optics Communications, 272(1), 40-43.
  4. Bae, J., Chun, J., Kailath, T., 2005. The Schur Algorithm Applied to the Design of Optical Multi-mirror Structures. Numerical Linear Algebra with Applications, 12(2-3), 283-292.
  5. Bae, J., Lee, C.H., Kim, H., Cho, J.H., 2013. Schur Algorithm for Sub-bottom Profiling. Journal of The Institute of Electronics Engineers of Korea, 50(9), 156-163.
  6. Choi, Y., Chun, J., Bae, J., 2011. Numerically Extrapolated Discrete Layer-peeling Algorithm for Synthesis of Nonuniform Fiber Bragg Gratings. Optics Express, 19(9), 8254-8266.
  7. Novikov, B.K., Rudenko O,V., Timoshenko, V.I., 1987. Nonlinear Underwater Acoustics. The American Institute of Physic, New York.
  8. Dowling, E.M., MacFarlane, D.L., 1994. Lightwave Lattice Filters for Optically Multiplexed Communication Wystems. Journal of Lightwave Technology, 12(3), 471-486.
  9. Fisher, F.H., Simmons, V.P., 1977. Sound Absorption in Sea Water. The Journal of the Acoustical Society of America, 62, 558-564.
  10. Hamilton, M.F., Blackstock, D.T., 1998. Nonlinear Acoustic. Academic Press.
  11. Kailath, T., 1987. Signal Processing Applications of Some Moment Problems. American Mathematical Society, 37, 71-109.
  12. Koltracht, I., Lancaster, P., 1988. Threshold Algorithms for the Prediction of Reflection Coefficients in a Layered Medium. Geophysics, 53(7), 908-919.
  13. Lee, J., Lee, C.H., Lee, S.W., Shin, J., Jung, J.W., 2012. Analysis of Highly Directional Sonar Communication System. Journal of The Institute of Electronics Engineers of Korea, 49(12), 861-867.
  14. Lee, Y.S., 1993. Numerical Solution of the KZK Equation for the Pulsed Finite Amplitude Sound Beams in the Rmoviscous. Ph. D. thesis, The University of Texas at Austin.
  15. Lurton, X., 2002. An Introduction to Underwater Acoustics Principles and Applications, Springer, Chichester, 2002.
  16. Markel, J.D., Gray, A.H., 1976. Linear Prediction of Speech. Springer-Verlag, New York.
  17. Moffett, M.B., Mellen, R.H., 1977. Models for Parametric Acoustic Sources. The Journal of the Acoustical Society of America, 61, 325-337.
  18. Orfanidis, S.J., 1988. Optimum Signal Processing: An Introduction. McGraw-Hill, New York.
  19. Rakotonarivo, S., Legris, M., Desmare, R., Sessarego, J., Bourillet, J., 2011. Forward Modeling for Marine Sediment Characterization Using Chirp Sonars. Geophysics, 76(4), T91-T99.
  20. Schwetlick, H., 1983. Inverse Methods in the Reconstruction of Acoustical Impedance Profilies. The Journal of the Acoustical Society of America, 73(4), 754-760.
  21. Tolsma, M., 2004. Model-based, Acoustic Subbottom Classification: Theory and Application. Netherlands.
  22. Vaidyanathan, P.P., 1933. Multirate Systems and Filter Banks, Prentice-Hall, Englewood Cliffs, NJ.
  23. Vetterli, M., 1987. A Theory of Multirate Filter Banks. Acoustics, Speech and Signal Processing, IEEE Transactions on, 35(3), 356-372.


Supported by : 제주대학교