DOI QR코드

DOI QR Code

Differential Evolution between Monotocous and Polytocous Species

  • Ahn, Hyeonju (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Kyu-Won (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Kim, Hyeon Jeong (C&K Genomics, Seoul National University Research Park) ;
  • Cho, Seoae (C&K Genomics, Seoul National University Research Park) ;
  • Kim, Heebal (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2013.11.05
  • Accepted : 2013.12.13
  • Published : 2014.04.01

Abstract

One of the most important traits for both animal science and livestock production is the number of offspring for a species. This study was performed to identify differentially evolved genes and their distinct functions that influence the number of offspring at birth by comparative analysis of eight monotocous mammals and seven polytocous mammals in a number of scopes: specific amino acid substitution with site-wise adaptive evolution, gene expansion and specific orthologous group. The mutually exclusive amino acid substitution among the 16 mammalian species identified five candidate genes. These genes were both directly and indirectly related to ovulation. Furthermore, in monotocous mammals, the EPH gene family was found to have undergone expansion. Previously, the EPHA4 gene was found to positively affect litter size in pigs and supports the possibility of the EPH gene playing a role in determining the number of offspring per birth. The identified genes in this study offer a basis from which the differences between monotocous and polytocous species can be studied. Furthermore, these genes may harbor some clues to the underlying mechanism, which determines litter size and may prove useful for livestock breeding strategies.

Keywords

Monotocous;Polytocous;Differential Evolution

Acknowledgement

Supported by : Rural Development Administration

References

  1. Abe, Y., H. Sinozaki, T. Takagi, T. Minegishi, K. Kokame, K. Kangawa, M. Uesaka, and K. Miyamoto. 2006. Identification of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible genes in human amniotic epithelial cells. Reprod. Biol. Endocrinol. 4:1-9. https://doi.org/10.1186/1477-7827-4-1
  2. Brannstrom, M. and A. Enskog. 2002. Leukocyte networks and ovulation. J. Reprod. Immunol. 57:47-60. https://doi.org/10.1016/S0165-0378(02)00009-8
  3. Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17:540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  4. Fu, Y., J. Fu, and A. Wang. 2012a. Association of EphA4 polymorphism with swine reproductive traits and mRNA expression of EphA4 during embryo implantation. Mol. Biol. Rep. 39:2689-2696. https://doi.org/10.1007/s11033-011-1023-8
  5. Chai, L., L. Dai, Y. Che, J. Xu, G. Liu, Z. Zhang, and R. Yang. 2009. LRRC19, a novel member of the leucine-rich repeat protein family, activates NF-${\kappa}B$ and induces expression of proinflammatory cytokines. Biochem. Biophys. Res. Commun. 388:543-548. https://doi.org/10.1016/j.bbrc.2009.08.043
  6. Drogemuller, C., H. Hamann, and O. Distl. 2001. Candidate gene markers for litter size in different German pig lines. J. Anim. Sci. 79:2565-2570.
  7. Felsenstein, J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:163-166. https://doi.org/10.1111/j.1096-0031.1989.tb00562.x
  8. Fu, Y., G. Wang, J. Fu, and A. Wang. 2012b. Association of EphrinB2 gene polymorphism with litter size in pigs. In: Information Technology and Agricultural Engineering (Ed. E. Zhu and S. Sambath). Adv. Intell. Soft Comput. 134:811-818. https://doi.org/10.1007/978-3-642-27537-1_95
  9. Galloway, S. M., K. P. McNatty, L. M. Cambridge, M. P. Laitinen, J. L. Juengel, T. S. Jokiranta, R. J. McLaren, K. Luiro, K. G. Dodds, G. W. Montgomery, A. E. Beattie, G. H. Davis, and O. Ritvos. 2000. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25:279-283. https://doi.org/10.1038/77033
  10. Gu, W., P. Janssens, M. Holland, R. Seamark, and P. Kerr. 2005. Lymphocytes and MHC class II positive cells in the female rabbit reproductive tract before and after ovulation. Immunol. Cell Biol. 83:596-606. https://doi.org/10.1111/j.1440-1711.2005.01375.x
  11. Hedges, S. B., J. Dudley, and S. Kumar. 2006. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971-1972. https://doi.org/10.1093/bioinformatics/btl505
  12. Lu, B., C. Poirier, T. Gaspar, C. Gratzke, W. Harrison, D. Busija, M. M. Matzuk, K. E. Andersson, P. A. Overbeek, and C. E. Bishop. 2008. A mutation in the inner mitochondrial membrane peptidase 2-like gene (Immp2l) affects mitochondrial function and impairs fertility in mice. Biol. Reprod. 78:601-610. https://doi.org/10.1095/biolreprod.107.065987
  13. Hubbard, T., D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox, J. Cuff, V. Curwen, and T. Down. 2002. The Ensembl genome database project. Nucl. Acids Res. 30:38-41. https://doi.org/10.1093/nar/30.1.38
  14. Jennen, D. G., C. Magkoufopoulou, H. B. Ketelslegers, M. H. van Herwijnen, J. C. Kleinjans, and J. H. van Delft. 2010. Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol. Sci. 115:66-79. https://doi.org/10.1093/toxsci/kfq026
  15. Loytynoja, A. and N. Goldman. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl. Acad. Sci. USA. 102:10557-10562. https://doi.org/10.1073/pnas.0409137102
  16. Martinez, D., R. M. Berka, B. Henrissat, M. Saloheimo, M. Arvas, S. E. Baker, J. Chapman, O. Chertkov, P. M. Coutinho, and D. Cullen. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26:553-560. https://doi.org/10.1038/nbt1403
  17. Mou, Z., A. R. Tapper, and P. D. Gardner. 2009. The armadillo repeat-containing protein, ARMCX3, physically and functionally interacts with the developmental regulatory factor Sox10. J. Biol. Chem. 284:13629-13640. https://doi.org/10.1074/jbc.M901177200
  18. Pruitt, K. D., T. Tatusova, and D. R. Maglott. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucl. Acids Res. 35:D61-D65. https://doi.org/10.1093/nar/gkl842
  19. Vincent, A. L. 1997. The prolactin receptor gene is associated with increased litter size in pigs. Swine Res. Rep. http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1010&context=swinereports_1997. Accessed January 23, 2014.
  20. Rothschild, M., C. Jacobson, D. Vaske, C. Tuggle, L. Wang, T. Short, G. Eckardt, S. Sasaki, A. Vincent, D. McLaren, O. Southwood, H. van der Steen, A. Mileham, and G. Plastow. 1996. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc. Natl. Acad. Sci. USA. 93:201-205. https://doi.org/10.1073/pnas.93.1.201
  21. Serafini, P. C., I. Silva, G. D. Smith, E. Motta, A. M. Rocha, and E. C. Baracat. 2009. Endometrial claudin-4 and leukemia inhibitory factor are associated with assisted reproduction outcome. Reprod. Biol. Endocrinol. 7:30. https://doi.org/10.1186/1477-7827-7-30
  22. Stamenkovic, I., D. Sgroi, A. Aruffo, M. S. Sy, and T. Anderson. 1991. The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and alpha 2-6 sialyltransferase, CD75, on B cells. Cell 66:1133-1144. https://doi.org/10.1016/0092-8674(91)90036-X
  23. Toba, K., H. Hanawa, M. Sakaue, K. Yoshida, H. Itoh, J. Tsuchiyama, S. Maruyama, M. Narita, M. Takahashi, K. Watanabe, and Y. Aizawa. 2003. Fc epsilon RI and CD22 mRNA are expressed in early B-lineage and myeloid leukemia cell lines. Leuk Res. 27:173-182. https://doi.org/10.1016/S0145-2126(02)00086-3
  24. Warde-Farley, D., S. L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz, C. Grouios, F. Kazi, and C. T. Lopes. 2010. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucl. Acids Res. 38:W214-W220. https://doi.org/10.1093/nar/gkq537
  25. Yang, Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586-1591. https://doi.org/10.1093/molbev/msm088