DOI QR코드

DOI QR Code

A NOTE ON THE OBESITY AS AN EPIDEMIC

  • Received : 2013.12.16
  • Accepted : 2014.02.07
  • Published : 2014.03.25

Abstract

We present a theoretical study that assesses the persistence of obesity. The basic reproductive number for the model is computed, and its sensitivity on some parameter values is explored. This may be of interest to public health authorities.

Keywords

mathematical modeling;obesity;equilibrium;stability;basic reproductive number

References

  1. F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer New York, 2001.
  2. Byul Nim Kim, Mathmatical modeling for the tsutsugamushi disease transmission and its analysis, master thesis, December 2007.
  3. Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med 2007 Jul;357(4):370-9. https://doi.org/10.1056/NEJMsa066082
  4. James PT. Obesity: the worldwide epidemic, Clin. Dermatol. 2004 Jul-Aug;22(4):276-80. https://doi.org/10.1016/j.clindermatol.2004.01.010
  5. Diekmann, O. and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York, 2000.
  6. P. van den Driessche and James Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci, March 2005.
  7. Evangelista AM, Ortiz AR, Rios-Soto KR, Urdapilleta A., USA the fast food nation: obesity as an epidemic. Los Alamos National Laboratory, T-7, MS B284, Theoretical Division; 2004.
  8. James PT, Leach R, Kalamara E, Shayeghi M., The worldwide obesity epidemic, Obes Res 2001 Nov;9(4):228-33. https://doi.org/10.1038/oby.2001.123
  9. Jodar L, Santonja FJ, Gonzalez-Parra G., Modeling dynamics of infant obesity in the region of Valencia, Spain, Computer and Mathematics with Applications, 56 (2008), 679-689. https://doi.org/10.1016/j.camwa.2008.01.011
  10. Korea Health Statistics 2011:Korea National Health and Nutrition Examination Survey(KNHANESV-2). Korean Ministry of Health and Welfare: https://knhanes.cdc.go.kr/knhanes.
  11. Linda. J.S. Allen, An introduction to Mathematical biology, Pearson Prentice Hall, America, 2007.
  12. O. R. Moon, N. S. Kim, S. M. Jang, T. H. Yoon, S. O. Kim, The relationship between body mass index and the prevalence of obesity-related diseases based on the 1995 National Health Interview Survey in Kore, Obesity Reviews, 3(3), pages 191-196, August 2002. https://doi.org/10.1046/j.1467-789X.2002.00073.x
  13. Mun Seok Kim, Chaeshin Chu, Yongkuk Kim, A Note on Obesity as Epidemic in Korea, Public Health Res Perspect, 2(2) (2011), 135-140. https://doi.org/10.1016/j.phrp.2011.08.004
  14. www.medicalnewstoday.com.
  15. Santonja FJ, Villanueva RJ, Jodar L, Gonzalez Parra G., Mathematical modelling of social obesity epidemic in the region of Valencia, Spain, Math and Computer Modelling of Dynamical Systems, 6(1) (2010), 23-34.
  16. Strogatz, S. H., Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering, Perseus Pub., Cambridge, Mass. 2000.
  17. WHO. WHO obesity: preventing and managing the global epidemic. Report of the WHO consultation. World Health Organ Tech Rep Ser 894 (2000), 1-253.

Cited by

  1. Optimal Intervention Strategies for the Spread of Obesity vol.2015, 2015, https://doi.org/10.1155/2015/217808