DOI QR코드

DOI QR Code

Synthesis, Spectral, Characterization, DFT and Biological Studies of New 3-[(3-Chlorophenyl)-hydrazono]-pentane-2,4-dione Metal Complexes

  • Sadeek, Sadeek A. ;
  • Zordok, Wael A. ;
  • El-Farargy, Ahmed F. ;
  • El-Desoky, Sameh I.
  • Received : 2013.11.06
  • Accepted : 2014.01.24
  • Published : 2014.04.20

Abstract

A new series of metal complexes of V(IV), Pd(II), Pt(IV), Ce(IV) and U(VI) with 3-[(3-chlorophenyl)-hydrazono]-pentane-2,4-dione (Cphpd) were synthesized and characterized by elemental analysis, molar conductivity, magnetic moment measurements, UV-vis, FT-IR and $^1H$ NMR as well as TG-DTG techniques. The data indicated that the Cphpd acts as a bidentate ligand through the hydrazono nitrogen and one keto oxygen. The kinetic parameters have been evaluated by using Coats Redfern (CR) and Horowitz-Metzeger (HM) methods. The thermodynamic data reflected the thermal stability for all complexes. The calculated bond length and the bond stretching force constant, F(U=O), values for $UO_2$ bond are $0.775{\AA}$ and $286.95Nm^{-1}$. The bond lengths, bond angles, dipole moment and the lowest energy model structure of the complexes have been determined with DFT calculations. The antimicrobial activity of the synthesized ligand and its complexes were screened.

Keywords

Cphpd;Transition metal complexes;FT-IR;Mass spectra

References

  1. Beltagi, A. M. J. Pharm. Biomed. Anal. 2003, 31, 1079. https://doi.org/10.1016/S0731-7085(02)00656-8
  2. Saif, M.; Mashaly, M. M.; Eid, M. F.; Fouad, R. Spectrochim. Acta.; Part A 2012, 92, 347. https://doi.org/10.1016/j.saa.2012.02.098
  3. Skauge, T.; Turel, I.; Sletten, E. Inorg. Chem. Acta. 2002, 339, 239. https://doi.org/10.1016/S0020-1693(02)00933-7
  4. Rossmore, H. W. Disinfection, Sterilization and Preservation, 4th ed.; Block, S. S., Ed., Lea and Febiger: Philadelphia, 1991; pp 290-321.
  5. Russell, A. D. Disinfection, Sterilization and Preservation, 4th ed.; Block, S. S., Ed., Lea and Febinger: Philadelphia, 1991, pp. 27-59.
  6. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133. https://doi.org/10.1103/PhysRev.140.A1133
  7. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  8. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37.
  9. Flurry, R. L. Jr. Molecular Orbital Theory of Bonding in Organic Molecules; Marcel Dekker: New York, 1968.
  10. Odabasoglu, M.; Buyukgungor, O.; Sarojini, B. K.; Narayana, B. Acta Cryst. 2007, E63, o4135.
  11. Mcglynnm, S. P.; Smith, J. K.; Neely, W. C. J. Chem. Phys. 1961, 35, 105. https://doi.org/10.1063/1.1731876
  12. Beecher, D. J.; Wong, A. C. Appl. Environ. Microbial. 1994, 60, 1646.
  13. Geary, W. J. Coord. Chem. Rev. 1971, 7, 81. https://doi.org/10.1016/S0010-8545(00)80009-0
  14. Nour, E. M.; Alnami, I. S.; Alem, N. A. J. Phys. Chem. Solids 1992, 53, 197. https://doi.org/10.1016/0022-3697(92)90028-C
  15. Syamal, A.; Singhal, P. O.; Banerjee, S. Synth. React. Inorg. Met.-Org. Chem. 1980, 243, 10.
  16. Jones, L. H. Spectrochim. Acta 1958, 10, 395
  17. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, 1986, pp 230-233.
  18. Sultana, N.; Arayne, M. S.; Gul, S.; Shamim, S. J. Mol. Struct. 2010, 975, 285. https://doi.org/10.1016/j.molstruc.2010.04.038
  19. Zordok, W. A.; El-Shwiniy, W. H.; El-Attar, M. S.; Sadeek, S. A. J. Mol. Struct. 2013, 1047, 267. https://doi.org/10.1016/j.molstruc.2013.04.076
  20. King, D. E.; Malone, R.; Lilley, S. H. Am. Fam. Phys. 2000, 61, 2741.
  21. Patai, S. Chemistry of the Carbon-nitrogen Double Bond; Willey: New York, 1970; pp 238-247.
  22. Jones, L. H. Spectrochim. Acta 1959, 15, 409. https://doi.org/10.1016/S0371-1951(59)80333-7
  23. Sadeek, S. A.; Teleb, S. M.; AL-Kority, A. M. J. Indian Chem. Soc. 1993, 70, 63.
  24. Refat, M. S. Spectrochim. Acta., Part A 2007, 68, 1393. https://doi.org/10.1016/j.saa.2006.12.078
  25. Nakamoto, K.; McCarthy, P. J.; Spectroscopy and Structure of Metal Chelate Compounds; John Wiley & Sons: New York, London, Sydney, 1968; chapter 2.
  26. Turel, I.; Golic, L.; Bukovec, P.; Gubina, M. J. Inorg. Biochem. 1998, 71, 53. https://doi.org/10.1016/S0162-0134(98)10032-6
  27. Rashad, A. E.; Shamroukh, A. H.; El-Hashash, M. A.; El-Farargy, A. F.; Yousif, N. M.; Salama, M. A.; Mostafa, A.; El-Shahat, M. J. Heterocyclic. Chem. 2012, 49, 1130. https://doi.org/10.1002/jhet.966
  28. Zordok, W. A.; Sadeek, S. A.; EL-Shwiniy, W. H. J. Coord. Chem. 2012, 65, 353. https://doi.org/10.1080/00958972.2011.654203
  29. Warrilow, A. G. S.; Martel, C. M.; Parker, J. E.; Melo, N.; Lamb, D. C.; Nes, W. D.; Kelly, D. E.; Kelly, S. L. Antmicrob. Agents Chemother. 2010, 54, 4235. https://doi.org/10.1128/AAC.00587-10
  30. Ahmed, M.; Schwendt, P.; Marek, J.; Sivak, M. Polyhedron 2004, 23, 655. https://doi.org/10.1016/j.poly.2003.11.040
  31. Grivani, G.; Khalaji, A. D.; Tahmasebi, V.; Gotoh, K.; Ishida, H. Polyhedron 2012, 31, 265. https://doi.org/10.1016/j.poly.2011.09.011
  32. Gonzalez-Baro, A. C.; Castellano, E. E.; Piro, O. E.; Parajon- Costa, B. S. Polyhedron 2005, 24, 49. https://doi.org/10.1016/j.poly.2004.09.032
  33. Kuriakose, M.; Prathapachandra Kurup, M. R.; Suresh, E. Polyhedron 2007, 26, 2713. https://doi.org/10.1016/j.poly.2007.01.008
  34. Vannan, M.; Lloffman, J. T.; Dimayuga, V. L.; Dwight, T.; Carrano, C. J. Inorg. Chem. Acta 2007, 360, 529. https://doi.org/10.1016/j.ica.2006.07.089
  35. Rochon, F. D.; Massarweh, G. Inorg. Chim. Acta 2006, 359, 4095. https://doi.org/10.1016/j.ica.2006.04.014
  36. Quintal, S. M. O.; Felix, V.; Drew, M. G. B.; Nogueira, H. I. S. Polyhedron 2006, 25, 753. https://doi.org/10.1016/j.poly.2005.07.034
  37. Hao, Y. Z.; Li, Z. X.; Tian, J. L. J. Mol. Catal. A.: Chem. 2007, 265, 258. https://doi.org/10.1016/j.molcata.2006.09.045
  38. Kaplum, M.; Sandstrom, M.; Bostrom, D.; Shchukarev, A.; Persson, P. Inorg. Chem. Acta 2005, 358, 527. https://doi.org/10.1016/j.ica.2004.09.027
  39. Lo'pez, C.; Caubet, A.; Perez, S.; Solans, X.; Font-Bardla, M. J. Organ. Chem. 2003, 681, 82. https://doi.org/10.1016/S0022-328X(03)00581-3
  40. Kumar, P. R.; Upreti, S.; Singh, A. K. Polyhedron 2008, 27, 1610-1622. https://doi.org/10.1016/j.poly.2008.01.027
  41. Al-Jibori, S. A.; Habeeb, A. T.; Al-Jibori, G. H. H.; Dayaaf, N. A.; Merzweiler, K.; Wagner, C.; Schmidt, H.; Hogarth, G. Polyhedron 2014, 67, 338. https://doi.org/10.1016/j.poly.2013.09.007
  42. Sanchez, G.; Garcla, J.; Meseguer, D.; Serrano, J. L.; Garcla, L.; Perez, J.; Lopez, G. Inorg. Chim. Acta 2004, 357,4568. https://doi.org/10.1016/j.ica.2004.06.040
  43. Griffith, D. M.; Biro, L.; Platts, J. A.; Muller-Bunz, H.; Farkas, E.; Buglyo, P. Inorg. Chim. Acta 2012, 380, 291. https://doi.org/10.1016/j.ica.2011.09.050
  44. Oltean, D.; Pollnitz, A.; Silvestru, A. Polyhedron 2013, 53, 67. https://doi.org/10.1016/j.poly.2013.01.023
  45. Gao, H. L.; Yi, L.; Zhao, B.; Zhao, X. Q.; Cheng, P.; Liao, D. Z.; Yan, S. P. Inorg. Chem. 2006, 45, 5980. https://doi.org/10.1021/ic060550j
  46. Aghabozorg, H.; et al. Polyhedron 2010, 29, 1453. https://doi.org/10.1016/j.poly.2010.01.027
  47. Jones, L. H. Spectrochim. Acta 1959, 11, 409.