DOI QR코드

DOI QR Code

Formation Fe2O3 Nanowalls through Solvent-Assisted Hydrothermal Process and Their Application for Titan Yellow GR Dye Degradation

  • Ahmed, Khalid Abdelazez Mohamed
  • Received : 2013.10.15
  • Accepted : 2014.02.11
  • Published : 2014.04.20

Abstract

Hematite iron oxide (${\alpha}$-$Fe_2O_3$) nanowalls were fabricated on aluminum substrate by a facile solvent-assisted hydrothermal oxidation process. The XRD and EDS patterns indicate that the sample has a rhombohedral phase of hematite $Fe_2O_3$. FE-SEM, TEM, HR-TEM, SA-ED were employed to characterize the resulting materials. $N_2$ adsorption-desorption isotherms was used to study a BET surface area. Their capability of catalytic degradation of titan yellow GR azo dye with air oxygen in aqueous solution over $Fe_2O_3$ catalysts was studied. The result indicates that the as-prepared product has a high catalytic activity, because it has a larger surface area. Langmuir and Freundlich isotherms of adsorption dye on the catalysts surface were investigated and the decomposition of titan yellow GR follows pseudo-first order kinetic.

Keywords

Iron oxide;Synthesis;Nanowalls;Catalyst;Titan yellow GR

References

  1. Huo, L. H.; Li, W.; Lu, L.; Cui, H. N.; Xi, S. Q.; Wang, J.; Zhao, B.; Shen, Y. C.; Lu, Z. H.Chem. Mater. 2000, 12, 790. https://doi.org/10.1021/cm990690+
  2. Gondal, M. A.; Hameed, A.; Yamani, Z. H.; Suwaiyan, A. Chem. Phys. Lett. 2004, 385, 111. https://doi.org/10.1016/j.cplett.2003.12.066
  3. Han, J. S.; Bredow, T.; Davey, D. E.; Yu, A. B.; Mulcahy, D. E. Sens. Actuators B 2001, 75, 18. https://doi.org/10.1016/S0925-4005(00)00688-2
  4. Zboril, R.; Mashlan, M.; Petridis, D. Chem. Mater. 2002, 14, 969. https://doi.org/10.1021/cm0111074
  5. Pelino, M.; Colella, C.; Cantallini, C.; Faccio, M.; Ferri, G.; D'Amico, A. Sens Actuators, B 1992, 7, 464. https://doi.org/10.1016/0925-4005(92)80345-X
  6. Pulgarin, C.; Kiwi, J. Langmuir 1995, 11, 519. https://doi.org/10.1021/la00002a026
  7. Zhang, G.; Gao, Y.; Zhang, Y.; Guo, Y. Environ. Sci. Technol. 2010, 44, 6384. https://doi.org/10.1021/es1011093
  8. Carneiro, P. A.; Nogueira, R. F. P.; Zanoni, M. V. B. Dyes Pigm. 2007, 74, 127. https://doi.org/10.1016/j.dyepig.2006.01.022
  9. Wu, C.; Yin, P.; Zhu, X.; OuYang, C.; Xie, Y. J. Phys. Chem. B 2006, 110, 17806. https://doi.org/10.1021/jp0633906
  10. Widder, K. J.; Senyei, A. E.; Scarpelli, D. G. Proc. Soc. Exp. Biol. Med. 1978, 58, 141.
  11. Pradhan, D.; Sindhwani, S.; Leung, K. T. Nanoscale Res. Lett. 2010, 5, 1727. https://doi.org/10.1007/s11671-010-9702-2
  12. Woo, K.; Hong, J. W.; Choi, S. M.; Lee, H. W.; Ahn, J. P.; Kim, C. S.; Lee, S. W. Chem. Mater. 2004, 16, 2814. https://doi.org/10.1021/cm049552x
  13. Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. Adv. Mater. 2005, 17, 582. https://doi.org/10.1002/adma.200401101
  14. Wen, X. G.; Wang, S. H.; Ding, Y.; Wang, Z. L.; Yang, S. H. J. Phys. Chem. B 2005, 109, 215. https://doi.org/10.1021/jp0461448
  15. Zheng, Y. H.; Cheng, Y.; Wang, Y. S.; Bao, F.; Zhou, L. H.; Wei, X. F.; Zhang, Y. Y.; Zheng, Q. J. Phys. Chem. B 2006, 110, 3093.
  16. Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren, J.; Guo, J. H. Adv. Mater. 2005, 17, 2320. https://doi.org/10.1002/adma.200500992
  17. Zeng, S. Y.; Tang, K. B.; Li, T. W.; Liang, Z. H.; Wang, D.; Wang, Y. K.; Zhou, W. W. J. Phys. Chem. C 2007, 111, 10217.
  18. Wu, Z. C.; Yu, K.; Zhang, S. D.; Xie, Y. J. Phys. Chem. C 2008, 112, 11307. https://doi.org/10.1021/jp803582d
  19. Gou, X. L.; Wang, G. X.; Park, J. S.; Liu, H.; Yang, J. Nanotechnol. 2008, 19, 125606. https://doi.org/10.1088/0957-4484/19/12/125606
  20. He, K.; Xu, C. Y.; Zhen, L.; Shao, W. Z. Mater. Lett. 2008, 62, 739. https://doi.org/10.1016/j.matlet.2007.06.082
  21. Casula, M. F.; Jun, Y. W.; Zaziski, D. J.; Chan, E. M.; Corrias, A.; Alivisatos, A. P. J. Am. Chem. Soc. 2006, 128, 1675. https://doi.org/10.1021/ja056139x
  22. Hu, X. L.; Yu, J. C.; Gong, J. M.; Li, Q.; Li, G. S. Adv. Mater. 2007, 19, 2324. https://doi.org/10.1002/adma.200602176
  23. Park, T. J.; Wong, S. S. Chem. Mater. 2006, 18, 5289. https://doi.org/10.1021/cm061503s
  24. Li, S. Z.; Zhang, H.; Wu, J. B.; Ma, X. Y.; Yang, D. R. Cryst. Growth Des. 2006, 6, 351. https://doi.org/10.1021/cg0495835
  25. Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Adv. Mater. 2006, 18, 2426. https://doi.org/10.1002/adma.200600504
  26. Zhu, L. P.; Xiao, H. M.; Liu, X. M.; Fu, S.Y. J. Mater. Chem. 2006, 16, 1794. https://doi.org/10.1039/b604378j
  27. Zhu, L. P.; Xiao, H. M.; Fu, S. Y. Cryst. Growth Des. 2007, 7, 177. https://doi.org/10.1021/cg060454t
  28. Cao, M. H.; Liu, T. F.; Gao, S.; Sun, G. B.; Wu, X. L.; Hu, C. W.; Wang, Z. L. Angew. Chem. Int. Ed. 2005, 44, 4197. https://doi.org/10.1002/anie.200500448
  29. Lei, D.; Zhang, M.; Qu, B.; Chen, L.; Wang, Y.; Zhang, E.; Xu, Z.; Li, Q.; Wang, T. Nanoscale 2012, 4, 3422-3426. https://doi.org/10.1039/c2nr30482a
  30. Liang, Z.; Gao, R.; Lan, J. L.; Wiranwetchayan, O.; Zhang, Q.; Li, C.; Cao, G. Sol. Energy Mater. Sol. Cells 2013, 117, 34-40. https://doi.org/10.1016/j.solmat.2013.05.019
  31. Varghese, B. et al. Chem. Mater. 2008, 20, 3360-3367. https://doi.org/10.1021/cm703512k
  32. Cao, F.; Pan, G. X.; Tang, P. S.; Chen, H. F. Mater. Res. Bull. 2013, 48, 1178-1183. https://doi.org/10.1016/j.materresbull.2012.12.021
  33. Shin, H. S.; Kwon, S.-J.; Yoop, Hakhoechi 1993, 30, 499.
  34. Ahmed, K. A. M.; Zeng, Q.; Wu, K.; Huang, K. J. Solid State Chem. 2010, 183, 744-751. https://doi.org/10.1016/j.jssc.2010.01.015
  35. Matthews, R. W. Water Res. 1991, 25, 1169-1176. https://doi.org/10.1016/0043-1354(91)90054-T
  36. Gogate, P. R.; Pandit, A. B. Adv. Environ.Res. 2004, 8, 501-551. https://doi.org/10.1016/S1093-0191(03)00032-7
  37. Manivannan, M.; Reetha, D.; Ganesh, P. J. Ecobiotechnol. 2011, 3, 29-32.