DOI QR코드

DOI QR Code

Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold

3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가

  • Sa, Min-Woo (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Jong Young (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • 사민우 (안동대학교 기계공학과) ;
  • 김종영 (안동대학교 기계공학과)
  • Received : 2013.11.05
  • Accepted : 2014.01.12
  • Published : 2014.04.01

Abstract

In tissue engineering, a scaffold is a three-dimensional(3D) structure that serves as a template for regeneration the functions of damaged tissues or organs. Among materials for scaffolds, polycaprolactone(PCL) and ${\beta}$-tricalcium phosphate(${\beta}$-TCP) are biodegradable and biocompatible. In this study, we fabricated 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %), and pure ${\beta}$-TCP scaffolds by a multi-head scaffold fabrication system. Scaffolds with a pore size of $600{\pm}20{\mu}m$ was observed by scanning electron microscopy. The effects of 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) and pure ${\beta}$-TCP scaffolds were analyzed by evaluating their mechanical characteristics. In addition, in an in-vitro study using osteoblast-like saos-2 cells, we confirmed the effects of 3D scaffolds on cellular behaviors such as cell adhesion and proliferation. In summary, the 3D blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) scaffold was found to be suitable for human cancellous bone in terms of its the compressive strength, biocompatibility, and osteoconductivity. Thus, blending PCL and ${\beta}$-TCP could be a promising approach for fabricating 3D scaffolds for effective bone regeneration.

Keywords

Tissue Engineering;Scaffold;Biomaterial;Multi-Head Scaffold Fabrication System;Saos-2 Cells

Acknowledgement

Supported by : 안동대학교

References

  1. Byun, I. S., Sarkar, S. K., Seo, H. S., Lee, B. T. and Song, H. Y., 2010, "Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast," Korean J. Mater. Res., Vol. 20, No. 3, pp. 155-160. https://doi.org/10.3740/MRSK.2010.20.3.155
  2. Leong, K. F., Cheah, C. M. and Chua, C. K., 2010, "Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs," Biomaterials, Vol. 24, pp. 2363-2378.
  3. Zein, I., Hutmacher, D. W., Tan, K. C. and Teoh, S. H., 2002, "Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications," Biomaterials, Vol. 23, pp. 1169-1185. https://doi.org/10.1016/S0142-9612(01)00232-0
  4. Sohn, Y. S., Jung, J. W., Kim, J. Y. and Cho, D. W., 2011, "Investigation of Bi-Pore Scaffold Based on the Cell Behaviors on 3D Scaffold Patterns," Tissue Eng. Regen. Med., Vol. 8, No. Suppl. 2, pp. 66-72.
  5. Khang, G. S., Kim, M. S., Min, B. H., Lee, I. W., Rhee, J. M. and Lee, H, B., 2006, "Scaffolds for Tissue Engineering," Tissue Eng. Regen. Med., Vol. 3, No. 4, pp. 376-395.
  6. Marco, D., Dinuccio, D., Stefania, C., Michele, A., Paulo, J. B. and Federica, C., 2009, "Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications," Int. J. Biomater., Vol. 2009, 239643 (9pp).
  7. Hoque, M. E., Feng, W., Wong, Y. S., Hutmacher, D. W., Li, S., Huang, M. H., Vert, M., and Bartolo, P. J., 2008, "Scaffolds Designed and Fabricated with Elastic Biomaterials Applying CAD-CAM Technique," Tissue Eng. Part A, Vol. 14, No. 5, p. 907.
  8. Hutmacher, D. W, Schantz, I., Ng. K. W., Teoh, S. H. and Tan, K. C., 2001, "Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling," J. Biomed. Mater. Res., Vol. 55, No. 2, pp. 203-216. https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
  9. Moutos, F. T., Freed, L. E. and Guilak, F., 2007, "A Biomimetic Three-dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage," Nat. Mater., Vol. 6, pp. 162-167. https://doi.org/10.1038/nmat1822
  10. Sa, M. W. and Kim, J. Y., 2013, "Effect of Various Blending Ratios on the Cell Characteristics of PCL and PLGA Scaffolds Fabricated by Polymer Deposition System," Int. J. Prec. Eng. Manuf., Vol. 14, No. 4, pp. 649-655. https://doi.org/10.1007/s12541-013-0087-x
  11. Shim, J. H., Kim, J. Y., Park, J. K., Hahn, S. K., Rhie, J. W., Kang, S. W., Lee, S. H. and Cho, D. W., 2010, "Effect of Thermal Degradation of SFF-based PLGA Scaffolds Fabricated Using a Multi-head Deposition System Followed by Change of Cell Growth Rate," J. Biomater. Sci. Polym. Ed., Vol. 21, No. 8-9, pp. 1069-1080. https://doi.org/10.1163/092050609X12457428919034
  12. Shim, J. H., Lee, J. S. and Kim, J. Y., 2012, "Fabrication of Solid Freeform Based 3D Scaffold and Its In-vitro Characteristic Evaluation for Bone Tissue Engineering," Tissue Eng. Regen. Med., Vol. 11, No. 3, pp. 694-701.
  13. Rezwan, K., Chen, Q. Z, Blaker, J. J., and Boccaccini, A. R., 2006, "Biodegradable and Bioactive Porous Polymer/inorganic Composite Scaffolds for Bone Tissue Engineering," Biomaterials, Vol. 27, pp. 4313-4331.
  14. Su, J., Chen, L. and Li, L., 2012, "Characterization of Polycaprolactone and Starch Blends for Potential Application within the Biomaterials Field," Afr. J. Biotechnol., Vol. 11, No. 3, pp. 694-701.
  15. Wilson, C. E., van Blitterswijk, C. A., Verbout, A. J., Dhert, W. J. A. and de Bruijin, J. D., 2011, "Scaffolds with a Standardized Macro-architecture Fabricated from Several Calcium Phosphate Ceramics using an Indirect Rapid Prototyping Technique," J. Mater. Sci. Mater. Med., Vol. 22, pp. 97-105. https://doi.org/10.1007/s10856-010-4183-5
  16. Dorozhkin, S. V., 2010, "Bioceramics of Calcium Orthophosphates," Biomaterials, Vol. 31, pp. 1465-1485. https://doi.org/10.1016/j.biomaterials.2009.11.050
  17. Yunos, D. M., Bretcanu, O. and Boccaccini, A. R., 2008, "Polymer-bioceramic Composites for Tissue Engineering Scaffolds," J. Mater. Sci., Vol. 43, No. 13, pp. 4433-4442. https://doi.org/10.1007/s10853-008-2552-y
  18. Bellucci, D., Sola, A. and Cannillo, V., 2011, "A Revised Replication Method for Bioceramic Scaffolds," Bioceram. Dev. Appl., Vol. 1, D110401 (8pp).
  19. Franco, J., Hunger, P., Launey, M. E., Tomsia, A. P. and Saiz, E., 2010, "Direct Write Assembly of Calcium Phosphate Scaffolds Using a Water-Based Hydrogel," Acta Biomater., Vol. 6, pp. 218-228. https://doi.org/10.1016/j.actbio.2009.06.031
  20. Seol, Y. J., Park, D. Y., Park, J. Y., Kim, S. W., Park, S. J. and Cho, D. W., 2013, "A New Method of Fabricating Robust Freeform 3D Ceramic Scaffolds for Bone Tissue Regeneration," Biotechnol. Bioeng., Vol. 110, No. 5, pp. 1444-1455. https://doi.org/10.1002/bit.24794
  21. Yefang, Z., Hutmacher, D. W., Varawan, S. L. and Meng, L. T., 2007, "Comparison of Human Alveolar Osteoblasts Cultured on Polymer-ceramic Composite Scaffolds and Tissue Culture Plates," Int. J. Oral Maxillofac. Surg., Vol. 36, pp. 137-145. https://doi.org/10.1016/j.ijom.2006.08.012
  22. Tripathi, G. and Basu, B., 2012, "A Porous Hydroxyapatite Scaffold for Bone Tissue Engineering: Physico-Mechanical and Biological Evaluations," Ceram. Int., Vol. 38, pp. 341-349. https://doi.org/10.1016/j.ceramint.2011.07.012
  23. Hench, L. L., and Wilson, J., 1993, "An Introduction to Bioceramics," Academic Press, Vol. 12.
  24. Chung, H. S., Jee, H. S. and Das, S., 2010, "Selective Laser Sintering of PCL/TCP Composites for Tissue Engineering Scaffolds," J. Mech. Sci. Technol., Vol. 24, pp. 241-244. https://doi.org/10.1007/s12206-009-1141-6
  25. Lu, L., Zhang, Q., Wootton, D., Chiou, R., Li, D., Lu, B., Lelkes, P. and Zhou, J., 2012, "Biocompatibility and Biodegradation Studies of PCL/${\beta}$-TCP Bone Tissue Scaffold Fabricated by Structural Porogen Method," J. Mater. Sci. Mater. Med., Vol. 23, pp. 2217-2226. https://doi.org/10.1007/s10856-012-4695-2
  26. Wu, Q., Zhang, X., Wu, B. and Huang W., 2013, "Effects of Microwave Sintering on the Properties of Porous Hydroxyapatite Scaffolds," Ceram. Int., Vol. 39, pp. 2389-2395. https://doi.org/10.1016/j.ceramint.2012.08.091
  27. Yeo, A., Check, C., Teoh, S. H., Zhang, Z. Y., Buser, D. and Bosshardt, D. D., 2011, "Lateral Ridge Augmentation Using a PCL-TCP Scaffold in a Clinically Relevant but Challenging Micro Pig Model," Clin. Oral Implants Res., Vol. 23, pp. 1322-1332.
  28. Sa, M. W. and Kim, J. Y., 2013, "A Study on Fabrication of 3D Scaffolds Using Bio-Ceramic Fabrication System Based on Solid Free-Form Fabrication Technique," Tissue Eng. Regen. Med., Vol. 10, No. Suppl. 2, pp. 56-61.
  29. Lee, J. S., Cha, H. D., Shim, J. H., Jung, J. W., Kim, Y. Y. and Cho, D. W., 2012, "Effect of Pore Architecture and Stacking Direction on Mechanical Properties of Solid Freeform Fabrication-based Scaffold for Bone Tissue Engineering," J. Biomed. Mater. Res. Part A, Vol. 100A, pp. 1846-1853.
  30. Ryu, H. S., Youn, H. J., Hong, K. S., Chang, B. S., Lee, C. K. and Chung, S. S., 2002, "An Improvement in Sintering Property of ${\beta}$-Tricalcium Phosphate by Addition of Calcium Pyrophosphate," Biomaterials, Vol. 23, pp. 909-914. https://doi.org/10.1016/S0142-9612(01)00201-0
  31. Miranda, P., Saiz, E., Gryn, K. and Tomsia, A. P., 2005, "Sintering and Robocasting of ${\beta}$-Tricalcium Phosphate Scaffolds for Orthopedic Applications," Acta Biomater., Vol. 2, pp. 457-466.
  32. Lee, S. H., Park, S. A. and Kim, W. D., 2010, "Fabrication of Porous 3D PCL Scaffold Using Rapid Prototyping System," Tissue Eng. Regen. Med., Vol. 7, No. 2, pp. 211-216.