DOI QR코드

DOI QR Code

DING PROJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING MODULE

  • Zhang, Chunxia ;
  • Wang, Limin ;
  • Liu, Zhongkui
  • Received : 2012.02.13
  • Published : 2014.03.31

Abstract

In this paper, we introduce and discuss the notion of $D_C$-projective modules over commutative rings, where C is a semidualizing module. This extends Gillespie and Ding, Mao's notion of Ding projective modules. The properties of $D_C$-projective dimensions are also given.

Keywords

semidualizing modules;$D_C$-projective modules;$D_C$-projective dimensions;$G_C$-projective modules

References

  1. L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein projective, injective and flat dimensions-a functorial description with applications, J. Algebra 302 (2006), no. 1, 231-279. https://doi.org/10.1016/j.jalgebra.2005.12.007
  2. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, Berlin, 1992.
  3. M. Auslander and M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, No. 94 American Mathematical Society, Providence, R.I. 1969.
  4. L. W. Christensen, Gorenstein Dimensions, Springer, Berlin, 2000.
  5. N. Ding, Y. Li, and L. Mao, Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86 (2009), no. 3, 323-338. https://doi.org/10.1017/S1446788708000761
  6. N. Ding and L. Mao, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), no. 4, 491-506. https://doi.org/10.1142/S0219498808002953
  7. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, 2000.
  8. H.-B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267-284. https://doi.org/10.7146/math.scand.a-11434
  9. Y. Geng and N. Ding, W-Gorenstein modules, J. Algebra 325 (2011), 132-146. https://doi.org/10.1016/j.jalgebra.2010.09.040
  10. J. Gillespie, Model structures on modules over Ding-Chen rings, Homology, Homotopy Appl. 12 (2010), no. 1, 61-73. https://doi.org/10.4310/HHA.2010.v12.n1.a6
  11. E. S. Golod, G-dimension and generalized perfect ideals, Algebraic geometry and its applications, Trudy Mat. Inst. Steklov. 165 (1984), 62-66.
  12. H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
  13. K. Pinzon, Absolutely pure covers, Comm. Algebra 36 (2008), no. 6, 2186-2194. https://doi.org/10.1080/00927870801952694
  14. H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808. https://doi.org/10.1215/kjm/1250692289
  15. H. Holm and Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445. https://doi.org/10.1016/j.jpaa.2005.07.010
  16. N. Mahdou and M. Tamekkante, Strongly Gorenstein flat modules and dimensions, Chin. Ann. Math. Ser. B 32 (2011), no. 4, 533-548. https://doi.org/10.1007/s11401-011-0659-y
  17. J. J. Rotman, An Introductions to Homological Algebra, Academic Press, New York, 1979.
  18. W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Publishing Co., Amsterdam, 1974.
  19. D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2 (2010), no. 1, 111-137. https://doi.org/10.1216/JCA-2010-2-1-111

Cited by

  1. DC-projective dimensions, Foxby equivalence and SDC-projective modules vol.15, pp.06, 2016, https://doi.org/10.1142/S0219498816501115