Kim, Daejung;Lee, Seunghee

  • Received : 2012.06.21
  • Published : 2014.03.31


We prove that the set of k-type nonwandering points of a Z2-action T can be decomposed into a disjoint union of closed and T-invariant sets $B_1,{\ldots},B_l$ such that $T|B_i$ is topologically k-type transitive for each $i=1,2,{\ldots},l$, if T is expansive and has the shadowing property.


spectral decomposition theorem;k-type nonwandering sets;expansive;shadowing property


  1. P. Diamond, K. Lee, and Y. Han, Bishadowing and hyperbolicity, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 8, 1779-1788.
  2. N. Aoki and K.Hiraide, Topological Theory of Dynamical Systems, Recent advances, North-Holland Mathematical Library, 52, North-Holland Publising Co., Amesterdam, 1994.
  3. L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1992.
  4. T. Das, K. Lee, D. Richeson, and J. Wiseman, Spectral decomposition for topologically Anosov homeomorphisms on noncompact and non-metrizable spaces, Topology Appl. 160 (2013), no. 1, 149-158.
  5. K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67 (2003), no. 1, 15-26.
  6. P. Oprocha, Shadowing in multi-dimensional shift spaces, Colloq. Math. 110 (2008), no. 2, 451-460.
  7. R. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971), 177-209.
  8. P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Contin. Dyn. Syst. 20 (2008), no. 4, 1039-1056.
  9. S. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math. 1706, Springer, 1999.
  10. S. Pilyugin and S. Tikhomirov, Shadowing in actions of some abelian groups, Fund. Math. 179 (2003), no. 1, 83-96.
  11. K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics 128, Birkhuser Verlag, Basel, 1995.
  12. P. Walters, On the pseudo-orbit tracing property and its relationship to stability, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1997), 231-244, Lecture Notes in Math., 668, Springer, Berlin, 1978.

Cited by

  1. Spectral decomposition theorem in equicontinuous nonautonomous discrete dynamical systems vol.22, pp.5, 2016,
  2. On collective sensitivity for -actions vol.31, pp.2, 2016,