DOI QR코드

DOI QR Code

Branched DNA-based Synthesis of Fluorescent Silver Nanocluster

  • Received : 2013.12.03
  • Accepted : 2013.12.18
  • Published : 2014.04.20

Abstract

While single strand DNAs have been widely used for the scaffold of brightly fluorescent silver nanoclusters (Ag NCs), double strand DNAs have not been as successful. Herein, we report a novel synthetic approach for bright Ag NCs using branched double strand DNAs as the scaffolds for synthesis. X-shaped DNA (X-DNA) and Y-shaped DNA (Y-DNA) effectively stabilized Ag NCs, and both X-DNA and Y-DNA resulted in brightly fluorescent Ag NCs. The concentration and molar ratio of silver and DNA were found important for the fluorescence efficiency. The brightest Ag NC with the photoluminescence quantum efficiency of 19.8% was obtained for the reaction condition of 10 ${\mu}M$ X-DNA, 70 ${\mu}M$ silver, and the reaction time of 48 h. The fluorescence lifetime was about 2 ns for the Ag NCs and was also slightly dependent on the synthetic condition. Addition of Cu ions at the Ag NC preparations resulted in the quenching of Ag NC fluorescence, which was different to the brightening cases of single strand DNA stabilized Ag NCs.

Keywords

Ag nanocluster;Branched DNA;DNA-templated Ag nanocluster;Copper ion treatment

References

  1. Yeh, H.-C.; Sharma, J.; Han, J. J.; Martinez, J. S.; Werner, J. H. Nano Lett. 2010, 10, 3106. https://doi.org/10.1021/nl101773c
  2. Guo, W.; Yuan, J.; Dong, Q.; Wang, E. J. Am. Chem. Soc. 2009, 132, 932.
  3. Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys. Chem. 2007, 58, 409. https://doi.org/10.1146/annurev.physchem.58.032806.104546
  4. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Gronbeck, H.; Hakkinen, H. Proc. Natl. Acad. Sci. 2008, 105, 9157. https://doi.org/10.1073/pnas.0801001105
  5. Wilcoxon, J. P.; Abrams, B. L. Chem. Soc. Rev. 2006, 35, 1162. https://doi.org/10.1039/b517312b
  6. Sharma, J.; Rocha, R. C.; Phipps, M. L.; Yeh, H. C.; Balatsky, K. A.; Vu, D. M.; Shreve, A. P.; Werner, J. H.; Martinez, J. S. Nanoscale 2012, 4, 4107. https://doi.org/10.1039/c2nr30662j
  7. Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Acc. Chem. Res. 2000, 33, 27. https://doi.org/10.1021/ar9602664
  8. Zheng, J.; Dickson, R. M. J. Am. Chem. Soc. 2002, 124, 13982. https://doi.org/10.1021/ja028282l
  9. Xu, H.; Suslick, K. S. ACS Nano 2010, 4, 3209. https://doi.org/10.1021/nn100987k
  10. Shang, L.; Dong, S. Chem. Commun. 2008, 1088.
  11. Lesniak, W.; Bielinska, A. U.; Sun, K.; Janczak, K. W.; Shi, X.; Baker, J. R.; Balogh, L. P. Nano Lett. 2005, 5, 2123. https://doi.org/10.1021/nl051077u
  12. Zhang, J.; Xu, S.; Kumacheva, E. Adv. Mater. 2005, 17, 2336. https://doi.org/10.1002/adma.200501062
  13. Yu, J.; Patel, S. A.; Dickson, R. M. Angew. Chem. Int. Ed. 2007, 46, 2028. https://doi.org/10.1002/anie.200604253
  14. Richards, C. I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R. M. J. Am. Chem. Soc. 2008, 130, 5038. https://doi.org/10.1021/ja8005644
  15. Berti, L.; Burley, G. A. Nat. Nanotechnol. 2008, 3, 81. https://doi.org/10.1038/nnano.2007.460
  16. Schultz, D.; Gardner, K.; Oemrawsingh, S. S. R.; Markesevi , N.; Olsson, K.; Debord, M.; Bouwmeester, D.; Gwinn, E. Adv. Mater. 2013, 25, 2797. https://doi.org/10.1002/adma.201204624
  17. Yougen, L. I.; Tseng, Y. D.; Kwon, S. Y.; D'Espaux, L.; Bunch, J. S.; McEuen, P. L.; Luo, D. Nat. Mater. 2004, 3, 38. https://doi.org/10.1038/nmat1045
  18. Park, N.; Um, S. H.; Funabashi, H.; Xu, J.; Luo, D. Nat. Mater. 2009, 8, 432-437. https://doi.org/10.1038/nmat2419
  19. Um, S. H.; Lee, J. B.; Park, N.; Kwon, S. Y.; Umbach, C. C.; Luo, D. Nat. Mater. 2006, 5, 797. https://doi.org/10.1038/nmat1741
  20. Hur, J.; Im, K.; Hwang, S.; Choi, B.; Kim, S.; Hwang, S.; Park, N.; Kim, K. Sci. Rep. 2013, 3, 1282.
  21. Gwinn, E. G.; O'Neill, P.; Guerrero, A. J.; Bouwmeester, D.; Fygenson, D. K. Adv. Mater. 2008, 20, 279. https://doi.org/10.1002/adma.200702380
  22. Diez, I.; Ras, R. H. A. Nanoscale 2011, 3, 1963. https://doi.org/10.1039/c1nr00006c
  23. O'Neill, P. R.; Velazquez, L. R.; Dunn, D. G.; Gwinn, E. G.; Fygenson, D. K. J. Phys. Chem. C 2009, 113, 4229. https://doi.org/10.1021/jp809274m
  24. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
  25. Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. J. Am. Chem. Soc. 2004, 126, 5207. https://doi.org/10.1021/ja031931o
  26. Sharma, J.; Yeh, H.-C.; Yoo, H.; Werner, J. H.; Martinez, J. S. Chem. Commun. 2010, 46, 3280. https://doi.org/10.1039/b927268b
  27. Sauer, M.; Hofkens, J.; Enderlein, J. Handbook of Fluorescence Spectroscopy and Imaging; Wiley-VCH: 2011.
  28. Lan, G.-Y.; Huang, C.-C.; Chang, H.-T. Chem. Commun. 2010, 46, 1257. https://doi.org/10.1039/b920783j
  29. Seeman, N. C. Nature 2003, 421, 427. https://doi.org/10.1038/nature01406
  30. Mandelkern, M.; Elias, J. G.; Eden, D.; Crothers, D. M. J. Mol. Biol. 1981, 152, 153. https://doi.org/10.1016/0022-2836(81)90099-1
  31. Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nat. Nanotechnol. 2011, 6, 763. https://doi.org/10.1038/nnano.2011.187
  32. Tikhomirov, G.; Hoogland, S.; Lee, P.; Fischer, A.; Sargent, E. H.; Kelley, S. O. Nat. Nanotechnol. 2011, 6, 485. https://doi.org/10.1038/nnano.2011.100
  33. Ma, N.; Sargent, E. H.; Kelley, S. O. Nat. Nanotechnol. 2008, 4, 121.
  34. Mertig, M.; Colombi Ciacchi, L.; Seidel, R.; Pompe, W.; De Vita, A. Nano Lett. 2002, 2, 841. https://doi.org/10.1021/nl025612r
  35. Richter, J.; Seidel, R.; Kirsch, R.; Mertig, M.; Pompe, W.; Plaschke, J.; Schackert, H. K. Adv. Mater. 2000, 12, 507. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<507::AID-ADMA507>3.0.CO;2-G

Cited by

  1. Bio-inspired synthesis of metal nanomaterials and applications vol.44, pp.17, 2015, https://doi.org/10.1039/C5CS00133A
  2. DNA-templated silver nanoclusters: structural correlation and fluorescence modulation vol.8, pp.41, 2016, https://doi.org/10.1039/C6NR05872H
  3. Synthesis of Branched DNA Scaffolded Super-Nanoclusters with Enhanced Antibacterial Performance vol.14, pp.16, 2018, https://doi.org/10.1002/smll.201800185