DOI QR코드

DOI QR Code

Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls

철근콘크리트 전단벽의 횡하중-횡변위 관계의 일반화

  • Mun, Ju-Hyun (Dept. of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Dept. of Plant.Architectural Engineering, Kyonggi University)
  • 문주현 (경기대학교 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Received : 2013.09.24
  • Accepted : 2013.12.20
  • Published : 2014.04.30

Abstract

This study generalizes the lateral load-displacement relationship of reinforced concrete shear walls from the section analysis for moment-curvature response to straightforwardly evaluate the flexural capacity and ductility of such members. Moment and curvature at different selected points including the first flexural crack, yielding of tensile reinforcing bar, maximum strength, 80% of the maximum strength at descending branch, and fracture of tensile reinforcing bar are calculated based on the strain compatibility and equilibrium of internal forces. The strain at extreme compressive fiber to determine the curvature at the descending branch is formulated as a function of reduction factor of maximum stress of concrete and volumetric index of lateral reinforcement using the stress-strain model of confined concrete proposed by Razvi and Saatcioglu. The moment prediction models are simply formulated as a function of tensile reinforcement index, vertical reinforcement index, and axial load index from an extensive parametric study. Lateral displacement is calculated by using the moment area method of idealized curvature distribution along the wall height. The generalized lateral load-displacement relationship is in good agreement with test result, even at the descending branch after ultimate strength of shear walls.

이 연구에서는 철근콘크리트 전단벽의 횡하중 거동과 연성을 합리적으로 평가하기 위해서 모멘트-곡률관계를 정립하고 이로부터 단순화된 횡하중-횡변위관계를 제시하였다. 최초 휨 균열, 인장철근 항복, 최대내력, 최대내력의 80% 및 인장철근파단시점에서 모멘트와 곡률은 힘의 평형조건과 변형적합조건으로부터 정립되었다. 최대내력 이후의 곡률평가를 위한 압축측연단 콘크리트 변형률은 Razvi and Saatcioglu의 구속된 콘크리트의 응력-변형률 관계를 이용하여 최대응력의 감소계수와 횡보강근 체적지수의 함수로 제시하였다. 모멘트 평가모델은 변수연구를 통하여 인장철근지수, 수직철근지수 및 축력지수의 함수로 일반화하였다. 횡변위는 전단벽의 높이에 따라 분포된 이상화된 곡률로부터 모멘트 면적법을 이용하여 환산하였다. 제시된 횡하중-횡변위관계는 기존 실험 결과와 잘 일치하였으며, 특히 최대내력 이후의 거동을 잘 평가하였다.

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP), 한국 연구재단

References

  1. Park, R. and Paulay, T., Reinforced Concrete Structures, Wiley Interscience Publication, New Jersey, USA, 1933, 769 pp.
  2. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary, American Concrete Institute, Farmington Hills, Michigan, USA, 2011, 503 pp.
  3. European Standard EN 1992-1-1:2004, Eurocode 2 : Design of Concrete Structures, British Standard, Brussels, Belgium, 2004, 225 pp.
  4. Wallace, J. W. and Thomsen IV, J. H., "Seismic Design of RC Structural Walls. Part II: Application," Journal of Structural Engineering, ASCE, Vol. 121, No. 1, 1995, pp. 88-101. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:1(88)
  5. Paulay, T. and Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley Interscience Publication, New Jersey, USA, 1992, 768 pp.
  6. Kang, S. M. and Park, H. G., "Ductility Confinement of RC Rectangular Shear Wall," Journal of the Korea Concrete Institute, Vol. 14, No. 4, 2002, pp. 530-539. https://doi.org/10.4334/JKCI.2002.14.4.530
  7. Razvi, S. and Saatcioglu, M., "Confinement Model for High-Strength Concrete," Journal of Structural Engineering, ASCE, Vol. 125, No. 3, 1999, pp. 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281)
  8. Ali, A. and Wight, J. K., "RC Structural Walls with Staggered Door Openings," Journal of Structural Engineering, ASCE, Vol. 117, No. 5, 1991, pp. 1514-1531. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:5(1514)
  9. Thomsen, IV. J. H. and Wallace, J. H., "Displacement-Based Design of Slender Reinforced Concrete Structural Walls-Experimental Verification," Journal of Structural Engineering, ASCE, Vol. 130, No. 4, 2004, pp. 618-630. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(618)
  10. Kim, L. B., "Seismic Performance of Free-Edge Wall-Ends with Interlocking Spiral Reinforcement," M. S. Thesis, Department of Architecture, Seoul National University, South Korea, 2001, 88 pp.
  11. Yang, K. H., "Development of Performance-Based Design Guideline for High-Density Concrete Walls," Technical Report (2nd. year), Kyonggi University, 2013, 115 pp.
  12. Cardenas, A. E. and Magura, D. D., "Strength of High-Rise Shear Walls-Rectangular Cross Section," ACI Special Publication, Vol. 36, 1972, pp. 119-150.
  13. Kang, S. M. and Park, H. G., "Moment-Curvature Relationship of Structural Walls with Confined Boundary Element," Journal of the Korea Concrete Institute, Vol. 15, No. 2, 2003, pp. 323-334. https://doi.org/10.4334/JKCI.2003.15.2.323
  14. Yang, K. H., Mun, J. H., and Kim, G. H., "Complete Stress-Strain Model of Unconfined Concrete Generalized by Compressive Strength and Unit Weight," ACI Material Journal, Accepted, 2013.
  15. Sawyer, H. A., "Design of Concrete Frames for Two Failure Stages," Proceedings of the International Symposium on Flexural Mechanics of Reinforced Concrete, ASCE-ACI, MI, 1964, pp. 405-431.
  16. Mattock, A. H., "Discussion of 'Rotational Capacity of Reinforced Concrete Beams' by W. G. Corley," Journal of the Structural Division, ASCE, Vol. 93, No. ST2, 1967, pp. 519-522.
  17. Bohl, A. and Adebar, P., "Plastic Hinge Lengths in High-Rise Concrete Shear Walls," ACI Structural Journal, Vol. 108, No. 2, 2011, pp. 148-157.

Cited by

  1. Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect vol.28, pp.3, 2016, https://doi.org/10.4334/JKCI.2016.28.3.279