DOI QR코드

DOI QR Code

Effect of Dye-Degrading Microbes' Augmentation on Microbial Ecosystem of the Fluidizing Media and Color Treatment in a Pilot Plant

염료 분해균 증대를 통한 Pilot Plant에서의 담체 내 미생물 생태와 색도처리에 미치는 영향

Kim, Jung-Tae;Lee, Geon;Park, Do-Hyeon;Kang, Kyeong-Hwan;Kim, Joong-Kyun;Lee, Sang-Joon
김정태;이건;박도현;강경환;김중균;이상준

  • Received : 2013.08.13
  • Accepted : 2014.02.06
  • Published : 2014.04.30

Abstract

In a pilot-scale dyeing wastewater treatment using two-type fluidizing media, each thickness of biofilm was 15 and 30 ${\mu}m$, respectively. The numbers of protozoa inhabited in small-size (PEMT A) and big-size (PEMT B) media were $7.5{\times}10^4$ and $1.25{\times}10^5$ cells/ml, respectively, and dominant species were Entosiphon sulcatus var sulcatus in PEMT A and Chlamydomonas reinhardtii in PEMT B, respectively. Flask experiments using the two media revealed that the percentages of color removal were 25.8% in PEMT A and 27.1% in PEMT B after 72-h cultivation, indicating the necessity of bioaugmentation. Experiments for bioaugmentation effect on color removal were carried out in the pilot-scale treatment for 75 d by three-step operation under the control of wastewater loading rate and microbial input rate. Dye degradation occurred mainly in the second reaction tank, and the attachment of augmented dye-degrading microorganisms to media took at least 35 d. Final value of chromaticity in effluent was 227, meeting the required standard. Therefore bioaugmentation onto media was good for color treatment. In summary, thickness of biofilm formed on the media depended upon the size of media, resulting in different ecosystem inside the media. Hence, this affected microbial community and color treatment further. Accordingly, the reduction of operation cost is expected by efficient color-treatment process using bioaugmented media.

Keywords

Dyeing wastewater;Augmentation;Microbial ecosystem;Color removal;Pilot-scale

References

  1. Amaral, A.L., Da Motta, M., Pons M.N., Vivier, H., Roche, N., Mota, M., Ferreira, E.C., 2004, Survey of protozoa and metazoa populations in wastewater treatment plants by image analysis and discriminant analysis, Environmet., 15(4), 381-390. https://doi.org/10.1002/env.652
  2. Anliker, R., 1977, Color chemistry and the environment, Ecotoxicol. Environ. Saf., 1(2), 211-237. https://doi.org/10.1016/0147-6513(77)90037-9
  3. Banat, I.M., Nigam, P., Singh, D., Marchant, R., 1996, Microbial decolorization of textile-dye containing effluents: A review, Bioresour. Technol. 58(3), 217-227. https://doi.org/10.1016/S0960-8524(96)00113-7
  4. Bhatnagar, A., Jain, A. K., 2005, A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water, J. Colloid Interface Sci., 281(1), 49-55. https://doi.org/10.1016/j.jcis.2004.08.076
  5. Blanco, J., Torrades, F., De la Varge, M., Garcia-Montano, J., 2012, Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse, Desalin. 286, 394-399. https://doi.org/10.1016/j.desal.2011.11.055
  6. Crini, G., 2005, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 97(9), 1061-1085.
  7. Da Motta, M., Pons, M. N., Vivier, H., Amaral A. L., Ferreira, E. C., Roche, N., Mota, M., 2001, Study of protozoa population in wastewater treatment plants by image analysis, Brazilian J. Chem. Eng., 18(1), 103-111. https://doi.org/10.1590/S0104-66322001000100009
  8. Khandare, R. V., Kabra, A. N., Kadam, A. A., Govindwar, S. P., 2013, Treatment of dye containing wastewater by a developed lab scale phytoreactor and enhancement of its efficacy by bacterial augmentation, Int. Biodet. Biodeg., 78, 89-97. https://doi.org/10.1016/j.ibiod.2013.01.003
  9. Davila-Jimenez, M. M., Elizalde-Gonzalez M. P, Phernandez-Montoya, V., 2009, Perfomance of mango seed adsorbents in the adsorption of anthraquinone and azo dyes in single and binary aqueous solutions, Bioresour. Technol., 100(24), 6199-6206. https://doi.org/10.1016/j.biortech.2009.06.105
  10. Hu, D. X., Cui, M. H., Chen, Z. B., Tian, Y., Cui, Y. B., Ren, N. Q., Ran, C. Q., Sun, H.J., 2013, Performance of a novel HABR-CFASR system for the biological treatment of mixed printing and dyeing wastewater (MPDW), Desalin. Wat. Treat., DOI: 10.1080/19443994.2013.813005. https://doi.org/10.1080/19443994.2013.813005
  11. Kabra, A. N., Khandare, R. V., Govindwar, S. P., 2013, Development of a bioreactor for remediation of textile effluent and dye mixture: A plant-bacterial synergistic strategy, Wat. Res., 47(3), 1035-1048. https://doi.org/10.1016/j.watres.2012.11.007
  12. Kim, T. K., Park, C. H., Lee, J. W., Shin, E. B., Kim, S. Y., 2002, Pilot scale treatment of textile wastewater by combined process (fluidized biofilm processchemical coagulation-electrochemical oxidation), Wat. Res., 36(16), 3979-3988. https://doi.org/10.1016/S0043-1354(02)00113-6
  13. Kolekar, Y. M., Pawar, S. P., Gawai, K. R., Lokhande, P, D,. Shouche, Y. S., Kodam, K. M., 2008, Decolorization and degradation of disperse blue 79 and acid orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil, Bioresour. Technol. 99(18), 8999-9003. https://doi.org/10.1016/j.biortech.2008.04.073
  14. Kumar, P., Agnihotri, R., Wasewar, K. L., Uslu, H., Yoo, C. K., 2012, Status of adsorptive removal of dye from textile industry effluent, Desalin. Wat. Treat., 50(1-3), 226-244. https://doi.org/10.1080/19443994.2012.719472
  15. Lee, S. H., Park, I. H., Ryu, C. K., Park, W. S., Lee, S. H., Ryu S. H., Shin D. H., Park, J. H., 2012, Method for treating waste water, KOR Patent:10-1214991.
  16. Liu, M., Lu, Z., Chen, Z., Yu, S., Gao, C., 2011, Comparison of reverse osmosis and nanofiltration membranes in the treatment of biologically treated textile effluent for water reuse, Desalin., 281(17), 372-378. https://doi.org/10.1016/j.desal.2011.08.023
  17. Maghri, I., Kenz, A., Elkouali, M., Tanane, O., Talbi, M., 2012, Textile dyes removal from industrial waste water by Mytilus edulis shells, J. Mater. Environ. Sci., 3(1), 121-136.
  18. Manu, B., Chaudhari, S., 2002, Anaerobic decolorisation of simulated textile wastewater containg azo dyes, Bioresour. Technol., 82(3), 225-231. https://doi.org/10.1016/S0960-8524(01)00190-0
  19. Murali, V., Ong, S. A., Ho, L. N., Wong, Y. S., 2013, Evaluation of integrated anaerobic-aerobic biofilm reactor for degradation of azo dye methyl orange, Bioresour. Technol., 143, 104-111. https://doi.org/10.1016/j.biortech.2013.05.122
  20. Marimuthu, T., Rajendran, S., Manivannan, M., 2013, An analysis of efficiency and water quality parameters of dye effluent treatment plant, Karur, Tamilnadu, India, J. Environ. Sci. Comput. Sci. Eng. Technol., 2(3), 567-571.
  21. Martin Jr. R. W., Baillod, C. R., Mihelcic, J. R., 2005, Low-temperature inhibition of the activated sludge process by an industrial discharge containing the azo dye acid black 1, Wat. Res., 39(1), 17-28. https://doi.org/10.1016/j.watres.2004.07.031
  22. Mukhopadhyay, A., Dasgupta A. K., Chakrabarti, K. 2012, Thermostability, pH stability and dye degrading activity of a bacterial laccase are enhanced in th presence of Cu2O nanoparticles, Bioresour. Technol. 127, 25-36.
  23. Noroozi, B., Sorial, G. A., 2013, Application models for multi-component adsorption of dyes: A review, J. Environ. Sci., 25(3), 419-429. https://doi.org/10.1016/S1001-0742(12)60194-6
  24. O'Mahony, T., Guibal, E., Tobin, J. M., 2002, Reactive dye biosorption by Rhizopus arrhizus biomass. Enz. Microbial Technol., 31(4), 456-463. https://doi.org/10.1016/S0141-0229(02)00110-2
  25. Ong, S. A., Toorisaka, E., Hirata, M., Hano, T., 2005, Decolorization of azo dye (Orange II) in a sequential UASB-SBR system, Separ. Purif. Technol. 42(3), 297-302. https://doi.org/10.1016/j.seppur.2004.09.004
  26. Park, D., Lee, D. S., Kim, Y. M., Park, J. M., 2008, Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility, Bioresour. Technol., 99(6), 2092-2096. https://doi.org/10.1016/j.biortech.2007.03.027
  27. Park, D. H., Park, H. H., Kim, J. H., Ahn, S. G., 2011, Development of full scale plant for dyeing wastewater treatment using PEMT moving bed bio-film reactor, Report for ministry of environment, 071-091-142, Busan fashion color industry cooperative, Busan.
  28. Parshetti, G. K., Parshetti, S., Kalyani D. C., Doong R. A, Govindwar, S. P., 2012, Industrial dye decolorizing lignin peroxidse from Kocuria rosea MTCC 1532, Ann. Microbiol., 62(1), 217-223. https://doi.org/10.1007/s13213-011-0249-y
  29. Pearce, C. I., Lloyd, J. R., Guthrie, J. T., 2003, The removal of colour from textile wastewater using whole bacterial cells: a review, Dyes Pigm, 58(3), 179-196. https://doi.org/10.1016/S0143-7208(03)00064-0
  30. Phugare, S. S., Waghmare, S. R., Jadhav, J. P., 2011, Purification and characterization of dye degrading veratryl alcohol oxidase from Pseudomonas aeruginosa strain BCH, World. J. Microbiol. Biotechnol. 27(10), 2415-2423. https://doi.org/10.1007/s11274-011-0714-6
  31. Senthilkumar, M., Gnanapragasam, G., Arutchelvan, V., Nagarajan, S., 2011, Treatment of textile dyeing wastewater using two-phase pilot plant UASB reactor with sago wastewater as co-substrate, Chem. Eng. J., 166(1), 10-14. https://doi.org/10.1016/j.cej.2010.07.057
  32. Sharma, D. K., Saini, H. S., Singh, M., Chimni, S. S., Chadha, B. S., 2004, Biological treatment of textile dye acid violet-17 by bacterial consortium in and up-flow immobilized cell bioreactor, Lett. Appl. Microbiol., 38(5), 345-350. https://doi.org/10.1111/j.1472-765X.2004.01500.x
  33. Shin, C. H., Bae, J. S., 2012, A stability study of an advanced co-treatment system for dye wastewater reuse, J. Ind. Eng. Chem., 18(2), 775-779. https://doi.org/10.1016/j.jiec.2011.11.120
  34. Shin, W. S., Jeong, Y. G., Shin, D. H., Kim, Y. H., Hyun, B. W., 2006, Biological treatment of dye waste-water using moving-bed bioreactor., KOR Patent: 10-0614561-0000.
  35. Sponza, D. T., Isik, M., 2005, Toxicity and intermediates of C.I. Direct Red 28 dye through sequential anaerobic/aerobic treatment, Process Biochem., 40(8), 2735-2744. https://doi.org/10.1016/j.procbio.2004.12.016
  36. Steffan, S., Bardi, L., Marzona, M., 2005, Azo dye biodegradation by microbial cultures immobilized in alginate beads, Environ. Int., 31(2), 201-205. https://doi.org/10.1016/j.envint.2004.09.016
  37. Su, Y., Zhang, Y., Wang, J., Zhou, J., Lu, X., Lu, H., 2009, Enhanced bio-decolorization of azo dyes by co-immobilized quinone-reducing consortium and anthraquinone, Bioresour. Technol., 100(12), 2982-2987. https://doi.org/10.1016/j.biortech.2009.01.029
  38. Watharkar, A. D., Rane, N. R., Patil, S. M., Khandare, R. V., Jadhav, J. P., 2013, Enhanced phytotransformation of navy blue RX dye by Petunia grandiflora Juss. with augmentation of rhizospheric Bacillus pumilus strain PgJ and subsequent toxicity analysis, Bioresour. Technol., 142, 246-254. https://doi.org/10.1016/j.biortech.2013.05.044
  39. Yang, Q., Li, C., Li, H., Li, Y., Yu, N., 2009, Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor, Biochem. Eng. J., 43(3), 225-230. https://doi.org/10.1016/j.bej.2008.10.002
  40. Yang, Q., Wang, J., Wang, H., Chen, X., Ren, S., Li, X., Xu, Y., Zhang, H., Li, X., 2012, Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system, Bioresour. Technol., 117, 155-163. https://doi.org/10.1016/j.biortech.2012.04.059