SHIFTED HARMONIC SUMS OF ORDER TWO

DOI QR코드

DOI QR Code

Sofo, Anthony

  • 투고 : 2013.09.30
  • 발행 : 2014.04.30

초록

We develop a set of identities for Euler type sums. In particular we investigate products of shifted harmonic numbers of order two and reciprocal binomial coefficients.

키워드

harmonic numbers;binomial coefficients and gamma function;polygamma function;combinatorial series identities and summation formulas;partial fraction approach;hypergeometric identity

참고문헌

  1. J. Choi, Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Ineq. Appl. 49 (2013), 11 p.
  2. J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput. 218 (2011), no. 3, 734-740. https://doi.org/10.1016/j.amc.2011.01.062
  3. J. Choi and D. Cvijovic, Values of the polygamma functions at rational arguments, J. Phys. A: Math. Theor. 40 (2007), no. 50, 15019-15028; Corrigendum, ibidem 43 (2010), no. 23, 239801, 1p. https://doi.org/10.1088/1751-8113/40/50/007
  4. J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comp. Modelling 54 (2011), no. 9-10, 2220-2234. https://doi.org/10.1016/j.mcm.2011.05.032
  5. W. Chu, Summation formulae involving harmonic numbers, Filomat. 26 (2012), no. 1, 143-152. https://doi.org/10.2298/FIL1201143C
  6. W. Chu, Infinite series identities on harmonic numbers, Results Math. 61 (2012), no. 3-4, 209-221. https://doi.org/10.1007/s00025-010-0089-2
  7. K. Kolbig, The polygamma function ${\psi}$ (x) for x = 1/4 and x = 3/4, J. Comput. Appl. Math. 75 (1996), no. 1, 43-46.
  8. H. Liu and W. Wang, Harmonic number identities via hypergeometric series and Bell polynomials, Integral Transforms Spec. Funct. 23 (2012), no. 1, 49-68. https://doi.org/10.1080/10652469.2011.553718
  9. E. Munarini, Riordan matrices and sums of harmonic numbers, Appl. Anal. Discrete Math. 5 (2011), no. 2, 176-200. https://doi.org/10.2298/AADM110609014M
  10. A. Sofo, Computational Techniques for the Summation of Series, Kluwer Academic/Plenum Publishers, New York, 2003.
  11. A. Sofo, Sums of derivatives of binomial coefficients, Adv. in Appl. Math. 42 (2009), no. 1, 123-134. https://doi.org/10.1016/j.aam.2008.07.001
  12. A. Sofo, Harmonic sums and integral representations, J. Appl. Anal. 16 (2010), no. 2, 265-277.
  13. A. Sofo, Harmonic number sums in higher powers, J. Math. Anal. 2 (2011), no. 2, 15-22.
  14. A. Sofo, Summation formula involving harmonic numbers, Anal. Math. 37 (2011), no. 1, 51-64. https://doi.org/10.1007/s10476-011-0103-2
  15. A. Sofo, New classes of harmonic number identities, J. Integer Seq. 15 (2012), Article 12.7.4.
  16. A. Sofo, Finite number sums in higher order powers of harmonic numbers, Bull. Math. Anal. Appl. 5 (2013), no. 1, 71-79.
  17. A. Sofo, Mixed binomial sum identities, Integral Transforms Spec. Funct. 24 (2013), no. 3, 187-200. https://doi.org/10.1080/10652469.2012.685937
  18. A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011), no. 1, 93-113. https://doi.org/10.1007/s11139-010-9228-3
  19. H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, London, 2001.
  20. A. Dil and V. Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math. 5 (2011), no. 2, 212-229. https://doi.org/10.2298/AADM110615015D
  21. H.-T. Jin and L. H. Sun, On Spiess's conjecture on harmonic numbers, Discrete Appl. Math. 161 (2013), no. 13-14, 2038-2041. https://doi.org/10.1016/j.dam.2013.03.024

피인용 문헌

  1. 1. Some evaluation of harmonic number sums vol.27, pp.12, 2016, doi:10.4134/CKMS.2014.29.2.239
  2. 2. Quadratic and cubic harmonic number sums vol.447, pp.1, 2017, doi:10.4134/CKMS.2014.29.2.239