Effect of Crude Protein Levels in Concentrate and Concentrate Levels in Diet on In vitro Fermentation

  • Dung, Dinh Van (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Shang, Weiwei (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Yao, Wen (College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2013.09.11
  • Accepted : 2014.01.13
  • Published : 2014.06.01


The effect of concentrate mixtures with crude protein (CP) levels 10%, 13%, 16%, and 19% and diets with roughage to concentrate ratios 80:20, 60:40, 40:60, and 20:80 (w/w) were determined on dry matter (DM) and organic matter (OM) digestibility, and fermentation metabolites using an in vitro fermentation technique. In vitro fermented attributes were measured after 4, 24, and 48 h of incubation respectively. The digestibility of DM and OM, and total volatile fatty acid (VFA) increased whereas pH decreased with the increased amount of concentrate in the diet (p<0.001), however CP levels of concentrate did not have any influence on these attributes. Gas production reduced with increased CP levels, while it increased with increasing concentrate levels. Ammonia nitrogen ($NH_3$-N) concentration and microbial CP production increased significantly (p<0.05) by increasing CP levels and with increasing concentrate levels in diet as well, however, no significant difference was found between 16% and 19% CP levels. Therefore, 16% CP in concentrate and increasing proportion of concentrate up to 80% in diet all had improved digestibility of DM and organic matter, and higher microbial protein production, with improved fermentation characteristics.


In vitro Gas Production;Crude Protein;Roughage to Concentrate Ratio


  1. Chanthakhoun, V., M. Wanapat, and J. Berg. 2012. Level of crude protein in concentrate supplements influenced rumen characteristic, microbial synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livest. Sci. 144:197-204.
  2. Agle, M., A. N. Hristov, S. Zaman, C. Schneider, P. M. Ndegwa, and V. K. Vaddella. 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. J. Dairy Sci. 93:4211-4222.
  3. Association of Official Analytical Chemists (AOAC). 1990. Official Method of Analyis. 15th edn. AOAC international, Arlington, Virginia, USA.
  4. Bannink, A., J. Kogut, J. Dijkstra, J. France, S. Tamminga, and A. M. Van Vuuren. 2000. Modelling production and portal appearance of volatile fatty acids in dairy cows. In Modelling Nutrient Utilization in Farm Animals (Eds. J. P. McNamara, J. France, and D. E. Beever). CAB International, CABI publishing, Wallingford, UK.
  5. Chantiratikul, A., S. Chumpawadee, W. Kanchanamayoon, and P. Chantiratikul. 2009. Effect of dietary protein on nutrient digestibility and nitrogen metabolism in Thai-Indigenous heifers. J. Anim. Vet. Adv. 8:297-300.
  6. Getachew, G., P. H. Robinson, E. J. DePeters, and S. J. Taylor. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed. Sci. Technol. 111:57-71.
  7. Chen, S., P. Paengkoum, X. Xia, and P. Na-Lumpang. 2010. Effects of dietary protein on ruminal fermentation, nitrogen utilization and crude protein maintenance in growing Thai-indigenous beef cattle fed rice straw as roughage. J. Anim. Vet. Adv. 9:2396-2400.
  8. Chumpawadee, S., A. Chantiratikul, V. Rattanaphun, C. Prasert, and K. Koobaew. 2009. Effects of dietary crude protein levels on nutrient digestibility, ruminal fermentation and growth rate in Thai-Indigenous yearling heifers. J. Anim. Vet. Adv. 8: 1131-1136.
  9. Crawford, R. J., W. H. Jr Hoover, C. J. Sniffen, and B. A. Crooker. 1978. Degradation of feedstuff nitrogen in the rumen vs nitrogen solubility in three rumen solvents. J. Anim. Sci. 46:1768-1775.
  10. Ghorbani, B., T. Ghoorchi, H. Amanlou, and S. Zerehdaran. 2011. Effects of using monensin and different levels of crude protein on milk production, blood metabolites and digestion of dairy cows. Asian Australas. J. Anim. Sci. 24:65-72.
  11. Hoover, W. H. 1986. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 69:2755-2766.
  12. Krause, K. M. and G. R. Oetzel. 2006. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 126:215-236.
  13. Kumar, S., S. S. Dagar, S. K. Sirohi, R. C. Padhyay, and A. K. Puniya. 2013. Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Ann. Microb. 63:541-545.
  14. Mills, J. A. N., J. France, and J. Dijkstra. 1999. A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model: 1. Dietary starch characterisation and ruminal starch digestion. J. Anim. Feed Sci. 8:291-340.
  15. Martin, J. S. and M. M. Martin. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54:205-211.
  16. McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, and C. A. Morgan. 1995. Animal Nutrition. Longman Singapore Publisher (Pte) Ltd., Singapore.
  17. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
  18. Milis, C. and D. Liamadis. 2007. Effect of protein levels, main protein and non forage fiber source on digestibility, N balance energy value of sheep rations. J. Anim. Vet. Adv. 6:68-75.
  19. Norrapoke, T., M. Wanapat, and S. Wanapat. 2012. Effects of protein level and mangosteen peel pellets (Mago-pel) in concentrate diets on rumen fermentation and milk production in lactating dairy crossbreds. Asian Australas. J. Anim. Sci. 25:971-979.
  20. Orskov, E. R. 1986. Starch digestion and utilization in ruminants. J. Anim. Sci. 63:1624-1633.
  21. Paengkoum, P. and P. Tatsapong. 2009. Effect of different levels of protein on feed intake, digestibility and growth rate of Thai native beef fed pangola grass as roughages. In: Establishment of a Feeding Standard of Beef Cattle and a Feed Database for the Indochinese Peninsula (Eds. S. Oshio, M. Otsuka, and K. Sommart). JIRCAS, Tsukuba, pp. 76-78.
  22. Shahzad, S. A., N. A. Tauqir, F. Ahmad, M. U. Nisa, M. Sarwar, and M. A. Tipu. 2011. Effect of feeding different dietary protein and energy levels on the performance of 12-15-month old buffalo calves. Trop. Anim. Health Prod. 43:685-694.
  23. Pina, D. S., S. C. Valadares Filho, L. O. Tedeschi, A. M. Barbosa, and R. F. D. Valadares. 2009. Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers. J. Anim. Sci. 87:1058-1067.
  24. Promkot, C. and M. Wanapat. 2005. Effect of level of crude protein and use of cottonseed meal in diets containing cassava chips and rice straw for lactating dairy cows. Asian Australas. J. Anim. Sci. 18:502-511.
  25. Rodriguez, R., M. Mota, C. Castrillo, and M. Fondevila. 2010. In vitro rumen fermentation of the tropical grass Pennisetum purpureum and mixtures with browse legumes: Effects of tannin contents. J. Anim. Physiol. Nutr. 94:696-705.
  26. Soltan, Y. A., A. S. Morsy, S. M. A. Sallam, H. Louvandini, and A. L. Abdalla. 2012. Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis. J. Anim. Feed. Sci. 21:759-772.
  27. Suharti, S., D. A. Astuti, E. Wina, and T. Toharmat. 2011. Rumen microbial population in the in vitro fermentation of different ratios of forage and concentrate in the presence of whole lerak (Sapindus rarak) fruit extract. Asian Australas. J. Anim. Sci. 24:1086-1091.
  28. Tagliapietra, F., M. Cattani, H. H. Hansen, I. K. Hindrichsen, L. Bailoni, and S. Schiavon. 2011. Metabolizable energy content of feeds based on 24 or 48 h in situ NDF digestibility and on in vitro 24 h gas production methods. Anim. Feed Sci. Technol. 170:182-191.
  29. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Method for dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.
  30. Tahir, M. N., M. Hettaa, M. Larsen, P. Lund, and P. Huhtanena. 2013. In vitro estimations of the rate and extent of ruminal digestion of starch-rich feed fractions compared to in vivo data. Anim. Feed Sci. Technol. 179:36-45.
  31. Thang, C. M., I. Ledin, and J. Bertilsson. 2011. Degradation characteristics and fermentation kinetics of some tropical legumes and cassava foliage/root determined by the in vitro gas production technique. J. Anim. Sci. Technol. 29:40-53.
  32. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A sample gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197.
  33. Yuangklang, C., K. Vasupen, S. Wongsuthavas, and S. Bureenok. 2010. Effect of protein level on nutrient digestibility and nitrogen utilization in beef cattle. J. Anim. Vet. Adv. 9:1776-1779.
  34. Zicarelli, F., S. Calabro, M. I. Cutrignelli, F. Infascelli, R. Tudisco, F. Bovera, and V. Piccolo. 2011. In vitro fermentation characteristics of diets with different forage/concentrate ratios: comparison of rumen and faecal inocula. J. Sci. Food. Agric. 91:1213-1221.

Cited by

  1. Effects of Static or Oscillating Dietary Crude Protein Levels on Fermentation Dynamics of Beef Cattle Diets Using a Dual-Flow Continuous Culture System vol.11, pp.12, 2016,
  2. Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission vol.29, pp.11, 2016,
  3. Effects of different ratios and storage periods of liquid brewer’s yeast mixed with cassava pulp on chemical composition, fermentation quality and in vitro ruminal fermentation vol.30, pp.4, 2016,
  4. Effect of dietary protein content on performance, feed efficiency and carcass traits of feedlot Nellore and Angus × Nellore cross cattle at different growth stages vol.156, pp.01, 2018,