DOI QR코드

DOI QR Code

Effects of Storage Duration and Temperature on the Chemical Composition, Microorganism Density, and In vitro Rumen Fermentation of Wet Brewers Grains

  • Wang, B. (Institute of Dairy Science, College of Animal Sciences, Zhejiang University) ;
  • Luo, Y. (Institute of Dairy Science, College of Animal Sciences, Zhejiang University) ;
  • Myung, K.H. (Department of Animal Science, Chonnam National University) ;
  • Liu, J.X. (Institute of Dairy Science, College of Animal Sciences, Zhejiang University)
  • Received : 2013.10.23
  • Accepted : 2013.12.30
  • Published : 2014.06.01

Abstract

This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures ($5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$) and four durations (0, 1, 2, and 3 d) were arranged in a $4{\times}4$ factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as $25^{\circ}C$ and $35^{\circ}C$. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds $35^{\circ}C$, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above $35^{\circ}C$ during summer.

Keywords

Wet Brewers Grains;Storage Temperature;Storage Duration;Chemical Composition;Microorganism Density;In vitro Rumen Fermentation

References

  1. Ashbell, G., Z. G. Weinberg, Y. Hen, and I. Filya. 2002. The effects of temperature on the aerobic stability of wheat and corn silages. J. Ind. Microbiol. 28:261-263. https://doi.org/10.1038/sj.jim.7000237
  2. Allen, W. R. and K. R. Stevenson. 1975. Influence of additives on the ensiling process of wet brewers' grains. Can. J. Anim. Sci. 55:391-402. https://doi.org/10.4141/cjas75-048
  3. Amezqueta, S., E. Gonzalez-Penas, M. Murillo-Arbizu, and A. Lopez de Cerain. 2009. Ochratoxin A decontamination: A review. Food Control 20:326-333. https://doi.org/10.1016/j.foodcont.2008.05.017
  4. AOAC. 1997. Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Arlington, VA.
  5. Asurmendi, P., C. Barberis, A. Dalcero, L. Pascual, and L. Barberis. 2013. Survey of Aspergillus section Flavi and aflatoxin B1 in brewer's grain used as pig feedstuff in Cordoba, Argentina. Mycotoxin Res. 29:3-7. https://doi.org/10.1007/s12550-012-0148-5
  6. Atanda, S. A., J. A. Aina, S. A. Agoda, O. E. Usanga, and P. O. Pessu. 2012. Mycotoxin management in agriculture: A review. J. Anim. Sci. Adv. 2(Suppl. 3.1): 250-260.
  7. Cohen, E. 1985. Statistical evaluation of Arrhenius model and its applicability in prediction of food quality losses. J. Food Process. Preserv. 9:273-290. https://doi.org/10.1111/j.1745-4549.1985.tb00726.x
  8. Bjornberg, A. and J. Schnurer. 1993. Inhibition of the growth of grain-storage molds in vitro by the yeast Pichia anomala (Hansen) Kurtzman. Can. J. Microbiol. 39:623-628. https://doi.org/10.1139/m93-090
  9. Clark, J. H., M. R. Murphy, and B. A. Croaker. 1987. Supplying the protein needs of dairy cattle from by-product feeds. J. Dairy Sci. 70:1092-1109. https://doi.org/10.3168/jds.S0022-0302(87)80116-9
  10. Coblentz, W. K., J. O. Fritz, K. K. Bolsen, and R. C. Cochran. 1996. Quality changes in alfalfa hay during storage in bales. J. Dairy Sci. 79:873-885. https://doi.org/10.3168/jds.S0022-0302(96)76436-6
  11. CAST (Council of Agricultural Science and Technology). 2003. Mycotoxins: risks in plant, animal and human systems. EUA: CAST. Task Force Report no. 139.
  12. Dhiman, T. R., H. R. Bingham, and H. D. Radloff. 2003. Production response of lactating cows fed dried versus wet brewers' grain in diets with similar dry matter content. J. Dairy Sci. 86:2914-2921. https://doi.org/10.3168/jds.S0022-0302(03)73888-0
  13. Droppo, T. E., G. K. Macleod, and D. G. Grieve. 1985. Composition and storage characteristics of wet corn gluten feed. Can. J. Anim. Sci. 65:265-268. https://doi.org/10.4141/cjas85-032
  14. Fink-Gremmels, J. 1999. Mycotoxins: Their implications for human and animal health. Vet. Q. 21:115-120. https://doi.org/10.1080/01652176.1999.9695005
  15. Firkins, J. L., D. I. Harvatine, J. T. Sylvester, and M. L. Eastridge. 2002. Lactation performance by dairy cows fed wet brewers grains or whole cottonseed to replace forage. J. Dairy Sci. 85:2662-2668. https://doi.org/10.3168/jds.S0022-0302(02)74351-8
  16. Higgins, C. and F. Brinkhaus. 1999. Efficacy of several organic acids against molds. J. Appl. Poult. Res. 8:480-487. https://doi.org/10.1093/japr/8.4.480
  17. Hill, J. and J. D. Leaver. 2002. Changes in chemical composition and nutritive value of urea treated whole crop wheat during exposure to air. Anim. Feed Sci. Technol. 102:181-195. https://doi.org/10.1016/S0377-8401(02)00258-4
  18. Keller, L. A. M., K. M. Keller, M. P. Monge, C. M. Pereyra, V. A. Alonso, L. R. Cavaglieri, S. M. Chiacchiera, and C. A. R Rosa. 2012. Gliotoxin contamination in and pre- and postfermented corn, sorghum and wet brewer's grains silage in Sao Paulo and Rio de Janeiro State, Brazil. J. Appl. Microbiol. 112:865-873. https://doi.org/10.1111/j.1365-2672.2012.05273.x
  19. Hlödversson, R. and A. Kaspersson. 1986. Nutrient losses during deterioration of hay in relation to changes in biochemical composition and microbial growth. Anim. Feed Sci. Technol. 15:149-165. https://doi.org/10.1016/0377-8401(86)90022-2
  20. Hu, W. L., J. X. Liu, J. A. Ye, Y. M. Wu, and Y. Q. Guo. 2005. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol. 120:333-339. https://doi.org/10.1016/j.anifeedsci.2005.02.029
  21. Kaur, V. I. and P. K. Saxena. 2004. Incorporation of brewery waste in supplementary feed and its impact on growth in some carps. Bioresour. Technol. 91:101-104. https://doi.org/10.1016/S0960-8524(03)00073-7
  22. Kim, S. C. and A. T. Adesogan. 2006. Influence of ensiling temperature, simulated rainfall, and delayed sealing on fermentation characteristics and aerobic stability of corn silage. J. Dairy Sci. 89:3122-3132. https://doi.org/10.3168/jds.S0022-0302(06)72586-3
  23. Maciorowski, K. G., P. Herrera, F. T. Jones, S. D. Pillai, and S. C. Ricke. 2007. Effects on poultry and livestock of feed contamination with bacteria and fungi. Anim. Feed Sci. Technol. 133:109-136. https://doi.org/10.1016/j.anifeedsci.2006.08.006
  24. Madrid, J., M. D. Megias, and F. Hernandez. 2002. In vitro determination of ruminal dry matter and cell wall degradation, and production of fermentation end-products of various by-products. Anim. Res. 51:189-199. https://doi.org/10.1051/animres:2002018
  25. McDonald, P., A. R. Henderson, and S. J. E. Heron. 1991. Microorganisms. In: The Biochemistry of Silage (Eds. P. McDonald, A. R. Henderson, and S. J. E. Heron), 2nd ed. Chalcombe Publications, Abersytwyth, UK. pp. 81-151.
  26. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro rumen fluid. Anim. Res. Dev. 28:7-55.
  27. Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80:1463-1481. https://doi.org/10.3168/jds.S0022-0302(97)76075-2
  28. Nofsinger, G. W., J. E. VanCauwenberge, R. J. Bothast, and W. F. Kwolek. 1983. An Evaluation of chemical methods to extend the allowable storage time of wet distillers' grains. J. Agric. Food Chem. 31:276-279. https://doi.org/10.1021/jf00116a022
  29. MoH (Ministry of Health, P.R. China). 2010. National Food Safety Standard, Food Microbiological Examination: Enumeration of Moulds and Yeasts. (GB 4789.15-2010). Beijing, China. (in Chinese).
  30. MoA (Ministry of Agriculture, P.R. China). 2004. Feeding Standard of Fattening Sheep. (NY/T816-2004). Ministry of Agriculture of P. R. China, Beijing, China.
  31. Monica, M. S. S., B. B. Mariana, C. Benedito, S. Myrna, A. M. Carlos, C. B. S. C. B. Thereza, and J. M. B. Maria. 2007. Determination of fungal microbiota and mycotoxins in brewers grain used in dairy cattle feeding in the State of Bahia, Brazil. Food Control 18:404-408. https://doi.org/10.1016/j.foodcont.2005.11.007
  32. Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci. (Camb.) 92:499-503. https://doi.org/10.1017/S0021859600063048
  33. Samli, H. E., G. Sirci, J. L. Bermejo, F. Koc, A. A. Okur, and N. Senkoylu. 2008. Effect of addition of a commercial organic acid mixture on feed microbiology according to duration and conditions of storage. Acta Agric. Scand A -Anim. Sci. 58:186-190.
  34. Santos, M. B., G. A. Nader, P. H. Robinson, D. Kiran, U. Krishnamoorthy, and M. J. Gomes. 2010. Impact of simulated field drying on in vitro gas production and voluntary dry matter intake of rice straw. Anim. Feed Sci. Technol. 159:96-104. https://doi.org/10.1016/j.anifeedsci.2010.05.012
  35. SAS Institute Inc. 2000. SAS User's Guide: Statistics. Version 8.01. SAS Inst. Inc., Cary, NC.
  36. Schefferle, H. E. 1965. The microbiology of built up poultry litter. J. Appl. Bacteriol. 28:403-411. https://doi.org/10.1111/j.1365-2672.1965.tb02170.x
  37. Searle, L. P. 1984. The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen: A review. Analyst 109:549-568. https://doi.org/10.1039/an9840900549
  38. Westendorf, M. L. and J. E. Wohlt. 2002. Brewing by-products: Their use as animal feeds. Vet. Clin. North Am. Food Anim. Pract. 18:233-252. https://doi.org/10.1016/S0749-0720(02)00016-6
  39. Sodhi, H. S., H. S. Garcha, and U. Kiran. 1985. Screening of mycoflora of spent-up brewers' grains for aflatoxin production. J. Res. 22:124-129.
  40. Turner, J. E., W. K. Coblentz, D. A. Scarbrough, K. P. Coffey, D. W. Kellogg, J. M. Levi, and T. R. Robert. 2002. Changes in nutritive value of Bererwmuda grass hay during storage. Agron. J. 94:109-117. https://doi.org/10.2134/agronj2002.0109
  41. Van Soest, P. J., J. B. Bobertson, and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  42. Zebeli, Q., J. R. Aschenbach, M. Tafaj, J. Boguhn, B. N. Ametaj, and W. Drochner. 2012. Invited review: Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. J. Dairy Sci. 95:1041-1056. https://doi.org/10.3168/jds.2011-4421
  43. Zinedine, A., J. M. Soriano, J. C. Molto, and J. Manes. 2007. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 45:1-18. https://doi.org/10.1016/j.fct.2006.07.030
  44. Zopollatto, M., J. L. P. Daniel, and L. G. Nussio. 2009. Aditivos microbiologicos em silagens no Brasil: revisao dos aspectos da ensilagem e do desempenho de animais. R. Bras. Zootec. 38: 170-189. https://doi.org/10.1590/S1516-35982009001300018

Cited by

  1. Replacing soybean meal for wet brewer’s grains or urea on the performance of lactating dairy cows vol.47, pp.5, 2015, https://doi.org/10.1007/s11250-015-0802-y