DOI QR코드

DOI QR Code

Comparison of Faecal Microbial Community of Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire Sows

  • Yang, Lina (Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Bian, Gaorui (Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Su, Yong (Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhu, Weiyun (Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2013.10.02
  • Accepted : 2014.01.05
  • Published : 2014.06.01

Abstract

The objective of this study was to investigate differences in the faecal microbial composition among Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire sows and to explore the possible link of the pig breed with the gut microbial community. Among the sows, the Meishan, Landrace, Duroc, and Yorkshire sows were from the same breeding farm with the same feed. Fresh faeces were collected from three sows of each purebred breed for microbiota analysis and volatile fatty acid (VFA) determination. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that samples from Bama, Erhualian, and Xiaomeishan sows, which from different farms, were generally grouped in one cluster, with similarity higher than 67.2%, and those from Duroc, Landrace, and Yorkshire sows were grouped in another cluster. Principal component analysis of the DGGE profile showed that samples from the foreign breeds and the samples from the Chinese indigenous breeds were scattered in two different groups, irrespective of the farm origin. Faecal VFA concentrations were significantly affected by the pig breed. The proportion of acetate was higher in the Bama sows than in the other breeds. The real-time PCR analysis showed that 16S rRNA gene copies of total bacteria, Firmicutes and Bacteroidetes were significantly higher in the Bama sows compared to Xiaomeishan and Duroc sows. Both Meishan and Erhualian sows had higher numbers of total bacteria, Firmicutes, Bacteroidetes and sulphate-reducing bacteria as compared to Duroc sows. The results suggest that the pig breed affects the composition of gut microbiota. The microbial composition is different with different breeds, especially between overseas breeds (lean type) and Chinese breeds (relatively obese type).

Keywords

Pig Breed;Gut Microbiota;16S rRNA Gene;Volatile Fatty Acid (VFA);Denaturing Gradient Gel Electrophoresis (DGGE);Real-time PCR

References

  1. Deplancke, B., K. Hristova, H. Oakley, V. McCracken, R. Aminov, R. Mackie, and H. Gaskins. 2000. Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 66:2166-2174. https://doi.org/10.1128/AEM.66.5.2166-2174.2000
  2. Backhed, F., H. Ding, T. Wang, L. V. Hooper, G. Y. Koh, A. Nagy, C. F. Semenkovich, and J. I. Gordon. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101:15718-15723. https://doi.org/10.1073/pnas.0407076101
  3. Backhed, F., R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon. 2005. Host-bacterial mutualism in the human intestine. Science 307:1915-1920. https://doi.org/10.1126/science.1104816
  4. Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322. https://doi.org/10.1111/j.1574-6941.2007.00394.x
  5. Devkota, S., Y. Wang, M. W. Musch, V. Leone, H. Fehlner-Peach, A. Nadimpalli, D. A. Antonopoulos, B. Jabri, and E. B. Chang. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/-mice. Nature 487:104-108.
  6. DiBaise, J. K., H. Zhang, M. D. Crowell, R. Krajmalnik-Brown, G. A. Decker, and B. E. Rittmann. 2008. Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc. 83:460-469. https://doi.org/10.4065/83.4.460
  7. Fernandes, J., A. Wang, W. Su, S. R. Rozenbloom, A. Taibi, E. M. Comelli, and T. M. Wolever. 2013. Age, dietary fiber, breath methane, and fecal short chain fatty acids are interrelated in Archaea-Positive humans. J. Nutr. 143:1269-1275. https://doi.org/10.3945/jn.112.170894
  8. Guo, X., X. Xia, R. Tang, and K. Wang. 2008. Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs. Anaerobe 14:224-228. https://doi.org/10.1016/j.anaerobe.2008.04.001
  9. Li, X., L. Zhu, Y. Jiang, and T. Si. 2011. Evaluation of the Chinese indigenous pig breed Dahe and crossbred Dawu for growth and carcass characteristics, organ weight, meat quality and intramuscular fatty acid and amino acid composition. Animal 5:1485-1492. https://doi.org/10.1017/S1751731111000425
  10. Leser, T. D., J. Z. Amenuvor, T. K. Jensen, R. H. Lindecrona, M. Boye, and K. Moller. 2002. Culture-independent analysis of gut bacteria: The pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68:673-690. https://doi.org/10.1128/AEM.68.2.673-690.2002
  11. Ley, R. E., F. Backhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, and J. I. Gordon. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102:11070-11075. https://doi.org/10.1073/pnas.0504978102
  12. Ley, R. E., P. J. Turnbaugh, S. Klein, and J. I. Gordon. 2006. Microbial ecology: Human gut microbes associated with obesity. Nature 444:1022-1023. https://doi.org/10.1038/4441022a
  13. Luo, Y. H., Y. Su, A. D. G. Wright, L. L. Zhang, H. Smidt, and W. Y. Zhu. 2012. Lean breed Landrace pigs harbor fecal methanogens at higher diversity and density than obese breed Erhualian pigs. Archaea 10. Article ID 605289.
  14. Mao, S. Y., C. F. Yang, and W. Y. Zhu. 2011. Phylogenetic analysis of methanogens in the pig feces. Curr. Microbiol. 62:1386-1389. https://doi.org/10.1007/s00284-011-9873-9
  15. Mao, S. Y., W. Huo, and W. Y. Zhu. 2013. Use of pyrosequencing to characterize the microbiota in the ileum of goats fed with increasing proportion of dietary grain. Curr. Microbiol. 67:341-350. https://doi.org/10.1007/s00284-013-0371-0
  16. Mo, D., B. Liu, Z. Wang, S. Zhao, M. Yu, B. Fan, M. Li, S. Yang, G. Zhang, and T. Xiong. 2003. Genetic variation and genetic relationship of seventeen Chinese indigenous pig breeds using ten serum protein loci. Asian Australas. J. Anim. Sci. 16:939-945. https://doi.org/10.5713/ajas.2003.939
  17. Mueller, S., K. Saunier, C. Hanisch, E. Norin, L. Alm, T. Midtvedt, A. Cresci, S. Silvi, C. Orpianesi, and M. C. Verdenelli. 2006. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Appl. Environ. Microbiol. 72:1027-1033. https://doi.org/10.1128/AEM.72.2.1027-1033.2006
  18. Samuel, B. S. and J. I. Gordon. 2006. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc. Natl. Acad. Sci. USA 103:10011-10016. https://doi.org/10.1073/pnas.0602187103
  19. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
  20. Nicholson, J. K., E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, and S. Pettersson. 2012. Host-gut microbiota metabolic interactions. Science 336:1262-1267. https://doi.org/10.1126/science.1223813
  21. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
  22. Schwiertz, A., D. Taras, K. Schafer, S. Beijer, N. A. Bos, C. Donus, and P. D. Hardt. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190-195. https://doi.org/10.1038/oby.2009.167
  23. Sekirov, I., S. L. Russell, L. C. Antunes, and B. B. Finlay. 2010. Gut microbiota in health and disease. Physiol. Rev. 90:859-904. https://doi.org/10.1152/physrev.00045.2009
  24. Spor, A., O. Koren, and R. Ley. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9:279-290. https://doi.org/10.1038/nrmicro2540
  25. Suzuki, M. T., L. T. Taylor, and E. F. DeLong. 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol. 66:4605-4614. https://doi.org/10.1128/AEM.66.11.4605-4614.2000
  26. Timm, D. A., W. Thomas, T. W. Boileau, P. S. Williamson-Hughes, and J. L. Slavin. 2013. Polydextrose and soluble corn fiber increase five-day fecal wet weight in healthy men and women. J. Nutr. 143:473-478. https://doi.org/10.3945/jn.112.170118
  27. Tremaroli, V. and F. Backhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242-249. https://doi.org/10.1038/nature11552
  28. Zoetendal, E. G., A. D. Akkermans, and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.
  29. Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027-1031. https://doi.org/10.1038/nature05414
  30. Turroni, F., A. Ribbera, E. Foroni, D. van Sinderen, and M. Ventura. 2008. Human gut microbiota and bifidobacteria: from composition to functionality. Antonie van Leeuwenhoek 94:35-50. https://doi.org/10.1007/s10482-008-9232-4
  31. Xu, X., P. Xu, C. Ma, J. Tang, and X. Zhang. 2013. Gut microbiota, host health, and polysaccharides. Biotechnol. Adv. 31:318-337. https://doi.org/10.1016/j.biotechadv.2012.12.009

Cited by

  1. Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing vol.28, pp.4, 2015, https://doi.org/10.5713/ajas.14.0651
  2. Comparison of Fecal Microbial Communities between White and Black Pigs vol.58, pp.4, 2015, https://doi.org/10.3839/jabc.2015.058
  3. Effects of low dietary protein on the metabolites and microbial communities in the caecal digesta of piglets vol.69, pp.3, 2015, https://doi.org/10.1080/1745039X.2015.1034521
  4. Gut Microbiota: The Brain Peacekeeper vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.00345
  5. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171576
  6. The fecal microbiota composition of boar Duroc, Yorkshire, Landrace and Hampshire pigs vol.30, pp.10, 2017, https://doi.org/10.5713/ajas.16.0746
  7. Studying the Differences of Bacterial Metabolome and Microbiome in the Colon between Landrace and Meihua Piglets vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01812
  8. Metagenomic Analysis of Cecal Microbiome Identified Microbiota and Functional Capacities Associated with Feed Efficiency in Landrace Finishing Pigs vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01546
  9. Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth vol.6, pp.1, 2018, https://doi.org/10.1186/s40168-017-0384-1
  10. Differences in gut microbiota composition in finishing Landrace pigs with low and high feed conversion ratios vol.111, pp.9, 2018, https://doi.org/10.1007/s10482-018-1057-1
  11. Exploring the Fecal Microbial Composition and Metagenomic Functional Capacities Associated With Feed Efficiency in Commercial DLY Pigs vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00052