Fourier Cosine and Sine Transformable Boehmians

Ganesan, Chinnaraman;Roopkumar, Rajakumar

  • Received : 2011.05.16
  • Accepted : 2013.11.13
  • Published : 2014.03.23


The range spaces of Fourier cosine and sine transforms on $L^1$([0, ${\infty}$)) are characterized. Using Fourier cosine and sine type convolutions, Fourier cosine and sine transformable Boehmian spaces have been constructed, which properly contain $L^1$([0, ${\infty}$)). The Fourier cosine and sine transforms are extended to these Boehmian spaces consistently and their properties are established.


Fourier cosine and sine transforms;convolution;Boehmians


  1. P. J. Miana, Convolutions, Fourier trigonometric transforms and applications, Integral Transform. Spec. Funct., 16(2005), 583-585.
  2. T. K. Boehme, The support of Mikusinski operators, Trans. Amer. Math. Soc., 176(1973), 319-334.
  3. V. A. Kakichev, N. X Thao and V. K. Tuan, On the generalized convolutions for Fourier cosine and sine transforms, East-West J. Math., 1(1998), 85-90.
  4. Y. Katznelson, An introduction to harmonic analysis, Dover, (1976).
  5. J. Mikusinski and P. Mikusinski, Quotients de suites et leurs applications dans l'analyse fonctionnelle, C.R. Acad. Sc. Paris, 293, Serie I (1981), 463-464.
  6. P. Mikusinski, Convergence of Boehmians, Japan. J. Math. (N.S.), 9(1983), 159-179.
  7. P. Mikusinski, The Fourier transform of tempered Boehmians, Fourier Analysis, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, (1994), 303-309.
  8. P. Mikusinski, Tempered Boehmians and ultra distributions, Proc. Amer. Math. Soc., 123(1995), 813-817.
  9. P. Mikusinski, On fiexibility of Boehmians, Integral transform. Spec. Funct., 4(1996), 141-146.
  10. W. Rudin, Real and complex analysis, McGraw-Hill Book Company, New York, 1987.
  11. I. N. Sneddon, The use of integral transforms, McGraw-Hill International Editions, New York, 1972.
  12. E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford University Press, 1948.