DOI QR코드

DOI QR Code

Design and Fabrication of a Vacuum Chamber for a Commercial Atomic Force Microscope

  • Park, Sang-Joon (School of Mechanical Engineering, Kyungpook National University) ;
  • Jeong, Yeon-Uk (School of Material Science and Engineering, Kyungpook National University) ;
  • Park, Soyeun (College of Pharmacy, Keimyung University) ;
  • Lee, Yong Joong (School of Mechanical Engineering, Kyungpook National University)
  • Received : 2014.02.07
  • Accepted : 2014.03.26
  • Published : 2014.03.30

Abstract

A vacuum chamber for a commercial atomic force microscope (AFM) is designed and fabricated. Only minimal modifications were made to an existing microscope in an effort to work in a vacuum environment, while most of the available AFM functionalities were kept intact. The optical alignment needed for proper AFM operations including a SLD (superluminescent diode) and a photodiode can be made externally without breaking the vacuum. A vacuum level of $5{\times}10^{-3}$ torr was achieved with a mechanical pump. An enhancement of the quality factor was observed along with a shift in the resonance frequency of a non-contact-mode cantilever in a vacuum. Topographical data of a calibration sample were also obtained in air and in a low vacuum using the non-contact mode and the results were compared.

Acknowledgement

Supported by : Kyungpook National University

References

  1. G. Binning, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986). https://doi.org/10.1103/PhysRevLett.56.930
  2. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982). https://doi.org/10.1103/PhysRevLett.49.57
  3. S. Kasas, N. H. Thomson, B. L. Smith, P. K. Hansma, J. Miklossy, and H. G. Hansma, Int. J. Imaging Syst. Technol. 8, 151 (1997). https://doi.org/10.1002/(SICI)1098-1098(1997)8:2<151::AID-IMA2>3.0.CO;2-9
  4. K. C. Chang, Y. W. Chiang, C. H. Yang, and J. W. Liou, Tzu Chi Medical Journal 24, 162 (2012). https://doi.org/10.1016/j.tcmj.2012.08.002
  5. P. A. Cox, D. A. Waldow, T. J. Dupper, S. Jesse, and D. S. Ginger, ACS Nano 7, 10405 (2013). https://doi.org/10.1021/nn404920t
  6. G. Shao, G. E. Rayermann, E. M. Smith, and D. S. Ginger, J. Phys. Chem. B 117, 4654 (2013). https://doi.org/10.1021/jp3090843
  7. N. Balke, D. Bonnell, D. S. Ginger, and M. Kemerink, MRS Bulletin 37, 633 (2012). https://doi.org/10.1557/mrs.2012.141
  8. R. Giridharagopal, G. E. Rayermann, G. Shao, D. T. Moore, O. G. Reid, and D. S. Ginger, Nano Letters 12, 893 (2012). https://doi.org/10.1021/nl203956q
  9. C. Groves, O. G. Reid, and D. S. Ginger, Accounts of Chemical Research 43, 612 (2010). https://doi.org/10.1021/ar900231q
  10. J. Lievonen, K. Ranttila, and M. Ahlskog, Rev. Sci. Instrum. 78, 043703 (2007). https://doi.org/10.1063/1.2719598
  11. J. Lubbe, M. Temmen, H. Schnieder, and M. Reichling, Meas. Sci. Technol. 22, 055501 (2011). https://doi.org/10.1088/0957-0233/22/5/055501