DOI QR코드

DOI QR Code

ON $\mathcal{I}$-SCATTERED SPACES

  • Li, Zhaowen ;
  • Lu, Shizhan
  • Received : 2013.01.22
  • Published : 2014.05.31

Abstract

In this paper, $\mathcal{I}$-scattered spaces are introduced, and their characterizations and properties are given. We prove that (X, ${\tau}$) is scattered if and only if (X, ${\tau}$, $\mathcal{I}$) is $\mathcal{I}$-scattered for any ideal $\mathcal{I}$ on X.

Keywords

ideals;scattered spaces;I-scattered spaces;*-isolated points;*-derived sets;*-dense sets;*-closed mappings;topological sums

References

  1. K. Kuratowski, Topology, Academic Press, New York, 1966.
  2. G. Artico, U. Marconi, R. Moresco, and J. Pelant, Selectors and scattered spaces, Topology Appl. 111 (2001), no. 1-2, 105-134. https://doi.org/10.1016/S0166-8641(99)00186-8
  3. M. N. Mukherjee, B. Roy, and R. Sen, On extensions of topological spaces in terms of ideals, Topology Appl. 154 (2007), no. 18, 3167-3172. https://doi.org/10.1016/j.topol.2007.08.014
  4. R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. thesis, University of Cal. at Santa Barbara, 1967.
  5. V. Renuka Devi, D. Sivaraj, and T. Tamizh Chelvam, Codense and completely codense ideals, Acta Math. Hungar. 108 (2005), no. 3, 197-205. https://doi.org/10.1007/s10474-005-0220-0
  6. R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci. 20 (1944), 51-61.
  7. Z. Li and F. Lin, On I-Baire spaces, Filomat 27 (2013), no. 2, 301-310. https://doi.org/10.2298/FIL1302301L
  8. E. Ekici, On I-Alexandroff and $I_g$-Alexandroff ideal topological spaces, Filomat 25 (2011), no. 4, 99-108. https://doi.org/10.2298/FIL1104099E
  9. J. Dontchev, On Hausdorff spaces via topological ideals and I-irresolute functions, Papers on general topology and applications (Slippery Rock, PA, 1993), 28-37, Ann. New York Acad. Sci., 767, New York Acad. Sci., New York, 1995.
  10. J. Dontchev, M. Ganster, and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon. 49 (1999), no. 3, 395-401.
  11. J. Dontchev, M. Ganster, and D. Rose, Ideal resolvability, Topology Appl. 93 (1999), no. 1, 1-16. https://doi.org/10.1016/S0166-8641(97)00257-5
  12. S. Fujii, K. Miyazaki, and T. Nogura, Vietoris continuous selections on scattered spaces, J. Math. Soc. Japan. 54 (2002), no. 2, 273-281. https://doi.org/10.2969/jmsj/05420273
  13. H. R. Bennett and J. Chaber, Scattered spaces and the class MOBI, Proc. Amer. Math. Soc. 106 (1989), no. 1, 215-221.
  14. G. Bezhanishvili, R. Mines, and P. J. Morandi, Scattered, Hausdorff-reducible, and hereditarily irresolvable spaces, Topology Appl. 132 (2003), no. 3, 291-306. https://doi.org/10.1016/S0166-8641(03)00039-7
  15. Z. Cai, D. Zheng, Z. Li, and H. Chen, I-separability on ideal topological spaces, J. Adv. Res. Pure Math. 3 (2011), no. 4, 85-91. https://doi.org/10.5373/jaram.267.100710
  16. E. Hatir, A. Keskin, and T. Noiri, A note on strong ${\beta}$-I-sets and strongly ${\beta}$-I-continuous functions, Acta Math. Hungar. 108 (2005), no. 1-2, 87-94. https://doi.org/10.1007/s10474-005-0210-2
  17. E. Hayashi, Topologies defined by local properties, Math. Ann. 156 (1964), 205-215. https://doi.org/10.1007/BF01363287
  18. M. Henriksen, R. Raphael, and R. G. Woods, SP-scattered spaces; a new generalization of scattered spaces, Comment. Math. Univ. Carolin. 48 (2007), no. 3, 487-505.
  19. D. S. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), no. 4, 295-310. https://doi.org/10.2307/2324512
  20. V. Kannan and M. Rajagopalan, Scattered spaces, Proc. Amer. Math. Soc. 43 (1974), 402-408. https://doi.org/10.1090/S0002-9939-1974-0334150-X
  21. V. Kannan and M. Rajagopalan, Scattered spaces II, Illinois J. Math. 21 (1977), no. 4, 735-751.
  22. A. Keskin, T. Noiri, and S. Yuksel, Idealization of a decomposition theorem, Acta Math. Hungar. 102 (2004), no. 4, 269-277. https://doi.org/10.1023/B:AMHU.0000024677.08811.6a