DOI QR코드

DOI QR Code

QUASIPOLAR MATRIX RINGS OVER LOCAL RINGS

  • Cui, Jian (Department of Mathematics Anhui Normal University) ;
  • Yin, Xiaobin (Department of Mathematics Anhui Normal University)
  • Received : 2013.04.22
  • Published : 2014.05.31

Abstract

A ring R is called quasipolar if for every a 2 R there exists $p^2=p{\in}R$ such that $p{\in}comm^2{_R}(a)$, $ a+p{\in}U(R)$ and $ap{\in}R^{qnil}$. The class of quasipolar rings lies properly between the class of strongly ${\pi}$-regular rings and the class of strongly clean rings. In this paper, we determine when a $2{\times}2$ matrix over a local ring is quasipolar. Necessary and sufficient conditions for a $2{\times}2$ matrix ring to be quasipolar are obtained.

Keywords

quasipolar ring;matrix ring;strongly clean ring;local ring

References

  1. M. F. Dischinger, Sur les anneaux fortement ${\pi}$-reguliers, C. R. Math. Acad. Sci. Paris 283 (1976), no. 8, 571-573.
  2. Z. Wang and J. Chen, On two open problems about strongly clean rings, Bull. Aust. Math. Soc. 70 (2004), no. 2, 279-282. https://doi.org/10.1017/S0004972700034493
  3. X. Yang and Y. Zhou, Strong cleanness of the $2{\times}2$ matrix ring over a general local ring, J. Algebra 320 (2008), no. 6, 2280-2290. https://doi.org/10.1016/j.jalgebra.2008.06.012
  4. Z. Ying and J. Chen, On quasipolar rings, Algebra Colloq. 19 (2012), no. 4, 683-692. https://doi.org/10.1142/S1005386712000557
  5. J. Cui and J. Chen, When is a $2{\times}2$ matrix ring over a commutative local ring quasipo- lar?, Comm. Algebra 39 (2011), no. 9, 3212-3221. https://doi.org/10.1080/00927872.2010.499118
  6. J. Cui and J. Chen, Characterizations of quasipolar rings, Comm. Algebra 41 (2013), no. 9, 3207- 3217. https://doi.org/10.1080/00927872.2012.660670
  7. J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595. https://doi.org/10.1081/AGB-100002409
  8. R. E. Harte, On quasinilpotents in rings, Panam. Math. J. 1 (1991), 10-16.
  9. J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), no. 1, 137-152. https://doi.org/10.1017/S1446788700003657
  10. B. Li, Strongly clean matrix rings over noncommutative local rings, Bull. korean Math. Soc. 46 (2009), no. 1, 71-78.
  11. Y. Li, Strongly clean matrix rings over local rings, J. Algebra 312 (2007), no. 1, 397-404. https://doi.org/10.1016/j.jalgebra.2006.10.032
  12. W. K. Nicholson, Local group rings, Canad. Math. Bull. 15 (1972), 137-138. https://doi.org/10.4153/CMB-1972-025-1
  13. W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. https://doi.org/10.1080/00927879908826649
  14. J. Chen, X. Yang, and Y. Zhou, On strongly clean matrix and triangular matrix rings, Comm. Algebra 34 (2006), no. 10, 3659-3674. https://doi.org/10.1080/00927870600860791
  15. G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean triangular matrix rings over local rings, J. Algebra 312 (2007), no. 2, 773-797. https://doi.org/10.1016/j.jalgebra.2006.10.029
  16. G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. https://doi.org/10.1016/j.jpaa.2007.05.020
  17. J. Chen, X. Yang, and Y. Zhou, When is the $2{\times}2$ matrix ring over a commutative local ring strongly clean?, J. Algebra 301 (2006), no. 1, 280-293. https://doi.org/10.1016/j.jalgebra.2005.08.005
  18. P. M. Cohn, Free Rings and Their Relations, 2nd edn, Academic Press, 1985.