Quality Characteristics of Doenjang by Aging Period

전통 된장의 숙성 기간에 따른 감각·화학적 품질특성

  • Ku, Kyung-Hyung (Div. of Convergence Technology, Korea Food Research Institute) ;
  • Park, Kyungmin (Div. of Convergence Technology, Korea Food Research Institute) ;
  • Kim, Hyun Jung (Div. of Convergence Technology, Korea Food Research Institute) ;
  • Kim, Yoonsook (Div. of Convergence Technology, Korea Food Research Institute) ;
  • Koo, Minseon (Div. of Convergence Technology, Korea Food Research Institute)
  • Received : 2013.05.23
  • Accepted : 2014.03.28
  • Published : 2014.05.31


In order to characterize the quality of Doenjang, fermented Korean soybean paste, subjected to long-term aging, this study performed physico-chemical analyses and sensory evaluation according to aging period (from 1 to 9 years). Regarding the proximate composition of Doenjang according to aging period, moisture, crude protein, crude lipid, crude ash, and salt contents showed little differences among Doenjang samples. Amino-type nitrogen content was 1,046.7 mg% in the 1 year-aged sample, 990.9~996.9 mg% in the 2~5 year-aged samples, and 1,214.1~1,304.8 mg% in the samples fermented more than 5 years. ${\Delta}$E value, reflecting total color differences between the samples, increased according to aging period. Ratios of linoleic and linolenic acids, which are essential fatty acids in soybeans, constituted 55% of total fatty acids, which was the most abundant among all fatty acids. The major free sugar in Doenjang was fructose at a content of 1.6~2.2% in 1~9 year-aged Doenjang. Glycoside form of isoflavones in Meju constituted 77.1%, and the aglycon form constituted 22.9%. However, the glycoside type of isoflavones in soybeans was converted to aglycon type in Doenjang through fermentation and aging. In the sensory evaluation of Doenjang samples, brown color, salt smell, soy sauce flavor, and viscosity all increased according to aging period, whereas sweet flavor, roast smell, beany flavor, salty taste, and acrid taste showed no significant differences. In cluster analysis of the sensory attributes of Doenjang according to aging period, 1 year-aged Doenjang was significantly different between 2 year- and 3~5 year-aged Doenjang.


  1. Kim MJ, Rhee HS. 1990. Studies on the changes of taste compounds during soy paste fermentation. Korean J Soc Food Sci 6: 1-8.
  2. Park JS, Lee MY, Kim JS, Lee TS. 1994. Compositions of nitrogen compound and amino acid in soybean paste (Doenjang) prepared with different microbial sources. Korean J Food Sci Technol 26: 609-615.
  3. Park SK, Seo KI, Shon MY, Moon JS, Lee YH. 2000. Quality characteristics of home-made doenjang, a traditional Korean soybean paste. Korean J Soc Food Sci 16: 121-127.
  4. Ahn SC, Bog HJ. 2007. Consumption pattern and sensory evaluation of traditional Doenjang and commercial Doenjang. Korean J Food Culture 22: 633-644.
  5. Lee WJ, Cho DH. 1970. Microbiological studies of Korean native soy sauce fermentation. A study on the microflora changes during Korean native soy-sauce fermentation. J Korean Agric Chem Soc 13: 35-42.
  6. Kim MH, Im SS, Yoo YB, Kim GE, Lee JH. 1994. Antioxidative materials in domestic Meju and Doenjang; 4. Separation of phenolic compounds and their antioxidative activity. J Korean Soc Food Nutr 23: 792-798.
  7. Hong SS, Chung KS, Yoon KD, Cho YJ. 1996. Antimutagenic effect of solvent extracts of Korean fermented soybean products. Food Biotechnol 5: 263-267.
  8. Shin ZI, Ahn CW, Nam HS, Lee HJ, Lee HJ, Moon TH. 1995. Fractionation of angiotensin converting enzyme (ACE) inhibitory peptides from soybean paste. Korean J Food Sci Technol 27: 230-234.
  9. Kim YT, Kim WK, Oh HI. 1995. Screening and identification of the fibinolytic bacterial strain from Chungkookjang. Korean J Appl Microbiol Biotechnol 23: 1-5.
  10. Park JS, Lee MY, Kim KS, Lee TS. 1994. Volatile flavor components of soybean paste (Doenjang) prepared from different types of strains. Korean J Food Sci Technol 26: 255-260.
  11. Lee SJ, Ahn B. 2008. Thermal changes of aroma components in soybean paste (Doenjang). Korean J Food Sci Technol 40: 271-276.
  12. Jung KO, Park SY, Park KY. 2006. Longer aging time increase the anticancer and antimetastatic properties of Doenjang. Nutrition 22: 539-545.
  13. Park JS, Kim DH, Lee JK, Lee JY, Kim DH, Kim HK, Lee HJ, Kim HC. 2010. Natural ortho-dihydroxyisoflavone derivatives from aged Korean fermented soybean paste as potent tyrosinase and melanin formation inhibitors. Bioorg Med Chem Lett 20: 1162-1164.
  14. Park JS, Park HY, Kim DH, Kim DH, Kim HK. 2008. ortho-Dihydroxyisoflavone derivatives from aged Doenjang (Korean fermented soypaste) and its radical scavenging activity. Bioorg Med Chem Lett 18: 5006-5009.
  15. AOAC. 1990. Official method of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  16. Korean Agency for Technology and Standards. 2009. KS H 2119: Doenjang. Korean Industrial Standard, Gwacheon, Korea.
  17. Hutchings JS. 1994. Instrumental specification. In Food Colour and Appearance. Blackie Academic & Professional, Bedford, UK. p 217-223.
  18. Jia Z, Tang M, Wu J. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-599.
  19. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30.
  20. Van den Berg B, Haenen GRMM, Van den Berg H, Bast A. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66: 511-517.
  21. KFDA. 2009. Food Code. Korea Food and Drug Administration, Seoul, Korea. p 10-3-1-43.
  22. Meilgaard M, Civvle GV, Carr BT. 1991. Sensory evaluation techniques. 2nd ed. CRC press, Boston, MA, USA. p 53-54.
  23. SAS. 1988. SAS/STAT User's Guide. Version 6. 2th ed. Statistical Analysis System Institute Inc., Cary, NC, USA.
  24. Park SK, Seo KI, Choi SH, Moon JS, Lee YH. 2000. Quality assessment of commercial Doenjang prepared by traditional method. J Korean Soc Food Sci Nutr 29: 211-217.
  25. Jo SJ, Hong CO, Yang SY, Choi KK, Kim HK, Yang H, Lee KW. 2011. Changes in contents of ${\gamma}$-aminobutyric acid (GABA) and isoflavones in traditional Korean Doenjang by ripening periods. J Korean Soc Food Sci Nutr 40: 557-564.
  26. Kim JG. 2004. Changes of compounds affecting organoleptic quality during the ripening of traditional Korean soybean paste-amino nitrogen, amino acids and color. J Fd Hyg Safety 19: 31-37.
  27. Kwon DJ, Kim YJ, Kim HJ, Hong SS, Kim HK. 1998. Changes of color in Doenjang by different browning factors. Korean J Food Sci Technol 30: 1000-1005.
  28. Lee KS, Lee JC, Lee JK, Hwang ES, Lee S, Oh MJ. 2002. Quality of 4-recommended soybean cultivars for Meju and Doenjang. Korean J Food Preserv 9: 205-211.
  29. Anna G, Santosh K, Shihikura Y, Anna GS, Marzanna H, Jozef K. 2006. Antioxidant activity of tea extracts in lipids and correlation with polyphenol content. Eur J Lipid Sci Technol 108: 351-362.

Cited by

  1. Changes Observed in Doenjang (Soybean Paste) Containing Fermented-Rhus verniciflua Extract During Aging vol.47, pp.5, 2015,
  2. Quality Characteristics and Composition Profile of Traditional Doenjang and Manufactured Doenjang during Storage Time vol.29, pp.5, 2016,
  3. Influence of water-soluble extracts of long-term fermented Doenjang on bone metabolism bioactivity and breast cancer suppression vol.25, pp.2, 2016,
  4. Quality Changes in Doenjang upon Fermentation with Two Different Bacillus subtilis Strains vol.26, pp.2, 2016,
  5. Quality characteristics of tangerine peel Soksungjang prepared from different koji strains vol.23, pp.1, 2016,
  6. Changes in Phenolic Compounds and Radical Scavenging Activity of Doenjang Prepared by Fermentation with Bacillus Subtilis HJ18-9 vol.45, pp.6, 2016,
  7. Evaluation of Quality Characteristics and Antioxidant Activities from Doenjang Ripened for 30 Years vol.48, pp.4, 2014,
  8. (fermented soybean paste) in Korea pp.08878250, 2018,
  9. Changes in the physicochemical characteristics of low-salt Doenjang by addition of halophytes vol.25, pp.7, 2018,