DOI QR코드

DOI QR Code

Luteolin Inhibits the Activity, Secretion and Gene Expression of MMP-3 in Cultured Articular Chondrocytes and Production of MMP-3 in the Rat Knee

  • Kang, Bun-Jung (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Ryu, Jiho (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Hwang, Sun-Chul (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University)
  • Received : 2014.02.20
  • Accepted : 2014.05.31
  • Published : 2014.05.31

Abstract

We investigated whether luteolin affects the gene expression, secretion and activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as production of MMP-3 in the rat knee to evaluate the potential chondroprotective effects of luteolin. Rabbit articular chondrocytes were cultured in a monolayer and IL-$1{\beta}$-induced gene expression levels of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen were measured by reverse transcription - polymerase chain reaction (RT-PCR). Effects of luteolin on interleukin- $1{\beta}$ (IL-$1{\beta}$)-induced secretion and enzyme activity of MMP-3 in rabbit articular chondrocytes were investigated by western blot analysis and casein zymography, respectively. The effect of luteolin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) luteolin inhibited the gene expression levels of MMP-3, MMP-1, MMP-13, ADAMTS-4 and ADAMTS-5. However, it increased the gene expression level of collagen in rabbit articular chondrocytes; (2) luteolin inhibited the secretion and activity of MMP-3; (3) luteolin inhibited in vivo production of MMP-3 protein. These results suggest that luteolin can regulate the gene expression, secretion and activity of MMP-3, by directly acting on articular chondrocytes.

References

  1. Stanton, H., Rogerson, F. M. East, C. J., Golub, S. B., Lawlor, K. E., Meeker, C. T., Little, C. B., Last, K., Farmer, P. J., Campbell, I. K., Fourie, A. M. and Fosang, A. J. (2005) ADAMTS-5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 434, 648-652. https://doi.org/10.1038/nature03417
  2. Sun, G. B., Sun, X., Wang, M., Ye, J. X., Si, J. Y., Xu, H. B., Meng, X. B., Qin, M., Sun, J., Wang, H. W. and Sun, X. B. (2012) Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression. Toxicol. Appl. Pharmacol. 265, 229-240. https://doi.org/10.1016/j.taap.2012.10.002
  3. Yoshihara, Y., Nakamura, H. bata, K., Yamada, H., Hayakawa, T., Fujikawa, K. and Okada, Y. (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis. 59, 455-461. https://doi.org/10.1136/ard.59.6.455
  4. Little, C. B., Barai, A. Burkhardt, D., Smith, S. M., Fosang, A. J., Werb, Z., Shah, M. and Thompson, E. W. (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723-3733. https://doi.org/10.1002/art.25002
  5. Loeser, R. F. (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators and aging collide. Arthritis Rheum. 54, 1357-1360. https://doi.org/10.1002/art.21813
  6. Manju, V. and Nalini, N. (2007) Protective role of luteolin in 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Cell Biochem. Funct. 25, 189-194. https://doi.org/10.1002/cbf.1305
  7. Mankin, H. J. (1982) The response for articular cartilage to mechanical injury. J. Bone Joint Surg. Am. 64, 460-466.
  8. Moncada-Pazos, A., Obaya, A. J., Viloria, C. G., Lopez-Otin, C. and Cal, S. (2011) The nutraceutical flavonoid luteolin inhibits ADAMTS- 4 and ADAMTS-5 aggrecanase activities. J. Mol. Med (Berl). 89, 611-619. https://doi.org/10.1007/s00109-011-0741-7
  9. Moon, P. D., Jeong, H. S., Chun, C. S. and Kim, H. M. (2011) Baekjeolyusin- tang and its active component berberine block the release of collagen and proteoglycan from IL-1$\beta$-stimulated rabbit cartilage and down-regulate matrix metalloproteinases in rabbit chondrocytes. Phytother. Res. 25, 844-850. https://doi.org/10.1002/ptr.3353
  10. Neuhold, L. A., Killar, L. Zhao, W., Sung, M. L., Warner, L., Kulik, J., Turner, J., Wu, W., Billinghurst, C., Meijers, T., Poole, A. R., Babij, P. and DeGennaro, L. J. (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 107, 35-44. https://doi.org/10.1172/JCI10564
  11. Okada, Y., Shinmei, M., Tanaka, O., Naka, K., Kimura, A., Nakanishi, I., Bayliss, M.T., Iwata, K. and Nagase, H. (1992) Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab. Invest. 66, 680-690.
  12. Pantsulaia, I., Kalichman, L. and Kobyliansky, E. (2010) Association between radiographic hand osteoarthritis and RANKL, OPG and inflammatory markers. Osteoarthritis Cartilage 18, 1448-1453. https://doi.org/10.1016/j.joca.2010.06.009
  13. Shibakawa, A., Aoki, H., Masuko-Hongo, K., Kato, T., Tanaka, M., Nishioka, K. and Nakamura, H. (2003) Presence of pannus-like tissue on osteoarthritic cartilage and its histological character. Osteoarthritis Cartilage 11, 133-140. https://doi.org/10.1053/joca.2002.0871
  14. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R. (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  15. Hu, P. F., Chen, W. P., Tang, J. L., Bao, J. P. and Wu, L .D. (2011) Protective effects of berberine in an experimental rat osteoarthritis model. Phytother. Res. 25, 878-885. https://doi.org/10.1002/ptr.3359
  16. Impellizzeri, D., Esposito, E., Paola, R. Di., Ahmad, A., Campolo, M., Pel, i A., Morittu, V. M., Britti, D. and Cuzzocrea, S. (2013) Palmitoylethanolamide and luteolin ameliorate development of arthritis caused by injection of collagen type II in mice. Arthritis Res.Ther. 15, R192. https://doi.org/10.1186/ar4382
  17. Jo, H., Park, J. S., Kim, E. M., Jung, M. Y., Lee, S. H., Seong, S. C., Park, S. C., Kim, H. J. and Lee, M. C. (2003) The in vitro effects of dehydroepiandrosterone on human osteoarthritic chondrocytes. Osteoarthritis Cartilage 11, 585-594. https://doi.org/10.1016/S1063-4584(03)00094-3
  18. Jung, H. A., Jin, S. E., Min, B. S., Kim, B. W. and Choi, J. S. (2012) Anti-inflammatory activity of Korean thistle Cirsium maackii and its major flavonoid, luteolin 5-O-glucoside. Food Chem. Toxicol. 50, 2171-2179. https://doi.org/10.1016/j.fct.2012.04.011
  19. Kanyama, M., Kuboki, T. Kojima, S., Fujisawa, T., Hattori, T., Takigawa, M. and Yamashita, A. (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids of patients with temporomandibular joint osteoarthritis. J. Orofac. Pain 14, 20-30.
  20. Kobayashi, M., Squires, G. R., Mousa, A., Tanzer, M., Zukor, D. J., Antoniou, J., Feige, U. and Poole, A. R. (2005) Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 52, 128-135. https://doi.org/10.1002/art.20776
  21. Kullich, W., Fagerer, N. and Schwann, H. (2007) Effect of the NSAID nimesulide on the radical scavenger glutathione S-transferase in patients with osteoarthritis of the knee. Curr. Med. Res. Opin. 23, 1981-1986. https://doi.org/10.1185/030079907X223486
  22. Lee, J. H. and Han, Y. (2011) Antiarthritic effect of lonicerin on Candida albicans arthritis in mice. Arch. Pharm. Res. 34, 853-859. https://doi.org/10.1007/s12272-011-0520-6
  23. Lee, J. H. and Kim, G. H. (2010) Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J. Food Sci. 75, H212-H217. https://doi.org/10.1111/j.1750-3841.2010.01755.x
  24. Lijnen, H. R. (2002) Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Mosc) 67, 92-98. https://doi.org/10.1023/A:1013908332232
  25. Lin, P. M., Chen, C. T. and Torzilli, P. A. (2004) Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis Cartilage 12, 485-496. https://doi.org/10.1016/j.joca.2004.02.012
  26. Blom, A. B., van Lent, P. L., Libregts, S., Holthuysen, A. E., van der Kraan, P. M., van Rooijen, N. and van den Berg, W. B. (2007) Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase-3. Arthritis Rheum. 56, 147-157. https://doi.org/10.1002/art.22337
  27. Bonnet, C. S. and Walsh, D. A. (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44, 7-16. https://doi.org/10.1093/rheumatology/keh344
  28. Burrage, P. S., Mix, K. S. and Brinckerhoff, C. E. (2006) Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529-543. https://doi.org/10.2741/1817
  29. Choi, E. M. and Lee, Y. S. (2010) Luteolin suppresses IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK, NFkappaB and AP-1 activation in human synovial sarcoma cell line, SW982. Food Chem. Toxicol. 48, 2607-2611. https://doi.org/10.1016/j.fct.2010.06.029
  30. Dean, D. D., Martel-Pelletier, J., Pelletier, J. P., Howell, D. S. and Woessner, J. F. Jr. (1989) Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J. Clin. Invest. 84, 678-685. https://doi.org/10.1172/JCI114215
  31. Echtermeyer, F., Bertrand, J., Dreier, R., Meinecke, I., Neugebauer, K., Fuerst, M., Lee, Y. J., Song, Y. W., Herzog, C., Theilmeier, G. and Pap, T. (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072-1076. https://doi.org/10.1038/nm.1998
  32. Freemont, A. J., Hampson, V., Tilman, R., Goupille, P., Taiwo, Y. and Hoyland, J. A. (1997) Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann. Rheum. Dis. 56, 542-549. https://doi.org/10.1136/ard.56.9.542
  33. Garnero, P., Rousseau, J. C. and Delmas. P. D. (2000) Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum. 43, 953-968. https://doi.org/10.1002/1529-0131(200005)43:5<953::AID-ANR1>3.0.CO;2-Q
  34. Goldring, M. B., Otero, M., Tsuchimochi, K., Ijiri, K. and Li, Y. (2008) Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann. Rheum. Dis. 67(Suppl 3), iii75-iii82.
  35. Goupille, P., Jayson, M. I., Valat, J. P. and Freemont, A. J. (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration. Spine (Phila Pa 1976) 23, 1612-1626. https://doi.org/10.1097/00007632-199807150-00021
  36. Hou, Y., Wu, J., Huang, Q. and Guo, L. (2009) Luteolin inhibits proliferation and affects the function of stimulated rat synovial fibroblasts. Cell Biol. Int. 33,135-147. https://doi.org/10.1016/j.cellbi.2008.10.005
  37. Aida, Y., Maeno, M., Suzuki, N., Shiratsuchi, H., Motohashi, M. and Matsumura, H. (2005) The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes. Life Sci. 77, 3210-3221. https://doi.org/10.1016/j.lfs.2005.05.052
  38. Aigner, T. and McKenna, L. (2002) Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol. Life Sci. 59, 5-18. https://doi.org/10.1007/s00018-002-8400-3
  39. Birkedal-Hansen, H., Moore, W. G., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A. and Engler, J. A. (1993) Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 4, 197-250.

Cited by

  1. Echinocystic Acid Inhibits IL-1β-Induced COX-2 and iNOS Expression in Human Osteoarthritis Chondrocytes vol.39, pp.2, 2016, https://doi.org/10.1007/s10753-015-0278-y
  2. Taraxasterol inhibits IL-1β-induced inflammatory response in human osteoarthritic chondrocytes vol.756, 2015, https://doi.org/10.1016/j.ejphar.2015.03.012
  3. Betulin suppressed interleukin-1β-induced gene expression, secretion and proteolytic activity of matrix metalloproteinase in cultured articular chondrocytes and production of matrix metalloproteinase in the knee joint of rat vol.21, pp.1, 2017, https://doi.org/10.4196/kjpp.2017.21.1.19
  4. Effect of oleanolic acid on the activity, secretion and gene expression of matrix metalloproteinase-3 in articular chondrocytesin vitroand the production of matrix metalloproteinase-3in vivo vol.21, pp.2, 2017, https://doi.org/10.4196/kjpp.2017.21.2.197
  5. Chlorogenic acid and luteolin synergistically inhibit the proliferation of interleukin-1β-induced fibroblast-like synoviocytes through regulating the activation of NF-κB and JAK/STAT-signaling pathways vol.37, pp.6, 2015, https://doi.org/10.3109/08923973.2015.1095763
  6. Coenzyme Q10 Prevents the Interleukin-1 Beta Induced Inflammatory Response via Inhibition of MAPK Signaling Pathways in Rat Articular Chondrocytes 2017, https://doi.org/10.1002/ddr.21412
  7. Identifying chondroprotective diet-derived bioactives and investigating their synergism vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-35455-8
  8. KLF15 Regulates the Expression of MMP-3 in Human Chondrocytes vol.38, pp.8, 2018, https://doi.org/10.1089/jir.2017.0135
  9. Structural insights into the binding mode of flavonols with the active site of matrix metalloproteinase-9 through molecular docking and molecular dynamic simulations studies vol.36, pp.14, 2018, https://doi.org/10.1080/07391102.2017.1397058