Estimation of Above-Ground Biomass of a Tropical Forest in Northern Borneo Using High-resolution Satellite Image

Phua, Mui-How;Ling, Zia-Yiing;Wong, Wilson;Korom, Alexius;Ahmad, Berhaman;Besar, Normah A.;Tsuyuki, Satoshi;Ioki, Keiko;Hoshimoto, Keigo;Hirata, Yasumasa;Saito, Hideki;Takao, Gen

  • 투고 : 2013.10.16
  • 심사 : 2013.11.23
  • 발행 : 2014.05.31


Estimating above-ground biomass is important in establishing an applicable methodology of Measurement, Reporting and Verification (MRV) System for Reducing Emissions from Deforestation and Forest Degradation-Plus (REDD+). We developed an estimation model of diameter at breast height (DBH) from IKONOS-2 image that led to above-ground biomass estimation (AGB). The IKONOS image was preprocessed with dark object subtraction and topographic effect correction prior to watershed segmentation for tree crown delineation. Compared to the field observation, the overall segmentation accuracy was 64%. Crown detection percent had a strong negative correlation to tree density. In addition, satellite-based crown area had the highest correlation with the field measured DBH. We then developed the DBH allometric model that explained 74% of the data variance. In average, the estimated DBH was very similar to the measured DBH as well as for AGB. Overall, this method can potentially be applied to estimate AGB over a relatively large and remote tropical forest in Northern Borneo.


tree crown delineation;biomass estimation;IKONOS-2


  1. Smith JA, Lin TL, Ranson KL. 1980. The lambertian assumption and landsat data. Photogram Eng Rem Sens 46: 1183-1189.
  2. Song C, Dickinson MB, Su L, Zhang S, Yaussey D. 2010. Estimating average tree crown size using spatial information from IKONOS and QuickBird images: Across-sensor and across-site comparisons. Rem Sens Environ 114: 1099-1107.
  3. Vermote EF, El Saleous N, Justice CO, Kaufman YJ, Privette JL, Remer L, Roger JC, Tanre D. 1997. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J Geophys Res 102: 17131-17141.
  4. Wang LJ, Gong P Biging GS. 2004. Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery. Photogram Eng Rem Sens 70: 351-357.
  5. Wulder MA, Niemann KO, Goodenough DG. 2002. Error reduction methods for local maximum filtering of high spatial resolution imagery for locating trees. Can J Rem Sens 28: 621-628.
  6. Whitemore TC. 1984. Tropical rain forests of the Far East. Clarendon Press, Oxford, United Kingdom.
  7. Yamakura T, Hagihara A, Sukardjo S, Ogawa H. 1986. Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Vegetatio 68: 71-82.
  8. Muukkonen P, Heiskanen J. 2007. Biomass estimation over a large area based on Standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Rem Sens Environ 107: 617-624.
  9. Langner A, Samejima H, Ong RC, Titin J, Kitayama K. 2012. Integration of carbon conservation into sustainable forest management using high resolution satellite imagery: A case study in Sabah, Malaysian Borneo. Int J Applied Earth Observ Geoinfor 18: 305-312.
  10. Leckie DG, Gougeon FA, Tinis S, Nelson T, Burnett CN, Paradine D. 2005. Automated tree recognition in old growth conifer stands with high resolution digital imagery. Rem Sens Environ 94: 311-326.
  11. Morel AC, Fisher JB, Malhi Y. 2012. Evaluating the potential to monitor aboveground biomass in forest and oil palm in Sabah, Malaysia, for 2000-2008 with Landsat ETM+ and ALOS-PALSAR. Int J Rem Sens 33: 3614-3639.
  12. Palace M, Keller M, Asner GP, Hagen S, Braswell B. 2007. Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties. Biotrop 40: 141-150.
  13. Peterson B, Gerlach F, Hutchin K. 2001. IKONOS relative spectral response and radiometric calibration coefficients. Document number SE-REF-016, Revision A, Space Imaging, Thornton, Colorado, USA.
  14. Phu MH, Saito H. 2003. Estimation of biomass of a mountainous tropical forest using Landsat TM data. Can J Rem Sens 29: 429-440.
  15. Pouliot D, King D. 2005. Approaches for optimal automated individual tree crown detection in regenerating coniferous forests. Can J Rem Sens 31: 255-267.
  16. Pouliot DA, King DJ, Bell FW, Pitt DG. 2002. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Rem Sens Environ 82: 322-334.
  17. Haijian Ma Qiming Q, Xinyi S. 2008. Shadow segmentation and compensation in high resolution satellite images. Proc Geosci Rem Sens Symp II: 1036-1039.
  18. FAO. 2005. Global Forest Resources Assessment 2005. Food and Agriculture Organization, Rome, Italy.
  19. Gebreslasiea MT, Ahmed FB, Aardt VJ, Blakeway F. 2011. Individual tree detection based on variable and fixed window size local maxima filtering applied to IKONOS imagery for even-aged Eucalyptus plantation forests. Int J Rem Sens 32: 4141-4154.
  20. Gibbs HK, Brown S, Niles JO, Foley JA. 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2: 1-13.
  21. Hirata Y, Fruya N, Suzuki M, Yamamoto H. 2008. Estimation of stand attributes in cryptomeria japonica and chamaecyparis obtusa stands from single tree detection using small-footprint airborne LiDAR data. J For Plann 13: 303-309.
  22. Hirata Y, Tsubota Y, Sakai A. 2009. Allometric models of DBH and crown area derived from QuickBird panchromatic data in Cryptomeria japonica and Chamaecyparis obtusa stands. Int J Rem Sens 30: 5071-5088.
  23. Jing L, Hu B, Noland T, Li J. 2012. An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPRS J Photogram Rem Sens 70: 88-98.
  24. Kenzo T, Ichie T, Hattori D, Itioka T, Handa C, Ohkubo T, Kendawang JJ, Nakamura M, Sakaguchi M, Takahashi N, Okamoto M, Tanaka-Oda A, Sakurai K, Ninomiya I. 2009. Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J Trop Ecol 25: 371-386.
  25. Kubo M, Muramoto KI. 2005. Tree crown detection and classification using forest imagery by IKONOS. Proc Geosci Rem Sens Symp 6: 4358-4361.
  26. Asner GP, Palace M, Keller M, Pereira R Jr, Silva JNM, Zweede JC. 2002. Estimating canopy structure in an Amazon Forest from laser range finder and IKONOS satellite observations. Biotrop 34: 483-492.
  27. Asner GP, Warner AS. 2003. Canopy shadow in IKONOS satellite observations of tropical forests and savannas. Rem Sens of Environ 87: 521-533.
  28. Avalos G, Mulkey SS. 1999. Seasonal changes in liana cover in the canopy of a neotropical dry forest. Biotrop 3: 186-191.
  29. Bartelink HH. 1996. Allometric relationships on biomass and needle area of Douglas-fir. For Ecol Manage 86: 193-203.
  30. Broadbent EN, Asner GP, Pena-Claros M, Palace M, Soriano M. 2008. Spatial partitioning of biomass and diversity in a lowland Bolivian forest: Linking field and remote sensing measurements. For Ecol Manage 255: 2602-2616.
  31. Brown S. 2002. Measuring carbon in forests: current status and future challenges. Environ Pollution 116: 363-372.
  32. Chavez PS Jr. 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Rem Sens Environ 24: 459-579.
  33. Clinton N, Holt A, Scarborough J, Li Y, Peng G. 2010. Accuracy assessment measures for object-based image segmentation goodness. Photogram Eng Rem Sens 76: 289-299.

피인용 문헌

  1. Seeing trees from space: above-ground biomass estimates of intact and degraded montane rainforests from high-resolution optical imagery vol.10, pp.3, 2017,