DOI QR코드

DOI QR Code

ON GENERALIZED TRIANGULAR MATRIX RINGS

Chun, Jang Ho;Park, June Won

  • 투고 : 2013.02.25
  • 심사 : 2013.12.13
  • 발행 : 2014.05.31

초록

For a generalized triangular matrix ring $$T=\[\array{R\;M\\0\;S}]$$, over rings R and S having only the idempotents 0 and 1 and over an (R, S)-bimodule M, we characterize all homomorphisms ${\alpha}$'s and all ${\alpha}$-derivations of T. Some of the homomorphisms are compositions of an inner homomorphism and an extended or a twisted homomorphism.

키워드

automorphisms;homomorphisms;derivations;generalized triangular matrix rings

참고문헌

  1. P. N. Anh, L. Van Wyk, Automomorphism groups of generalized triangular matrix rings, Linear Algebra Appl., 434(2011), 1018-1026. https://doi.org/10.1016/j.laa.2010.10.007
  2. H. Ghahramani, Skew polynomial rings of formal triangular matrix rings, J.Algebra, 349, (2012), 201-216. https://doi.org/10.1016/j.jalgebra.2011.10.014
  3. H. Ghahramani, A. Moussavi, Differential polynomial rings of triangular matrix rings, Bulletin of the Iranian Mathematical Society, 34(2), (2008), 71-96.
  4. M. N. Ghosseiri, The structure of (${\alpha},\;{\beta}$)-derivations of triangular rings, Iranian Journal of Science & Techonology, Transaction A, 29(A3), (2005), 507-514.
  5. R. Khazal, S. Dascalescu, L. Van Wyk, Isomomorphism of generalized triangular matrix-rings and recovery of tiles, Internat. J. Math. Sci., 2003(9), (2003), 533-538. https://doi.org/10.1155/S0161171203205251