DOI QR코드

DOI QR Code

Properties of Silicon for Photoluminescence

  • Baek, Dohyun (School of Electronic and Electrical Engineering, Sungkyunkwan University)
  • Received : 2014.05.13
  • Accepted : 2014.05.30
  • Published : 2014.05.30

Abstract

For more than five decades, silicon has dominated the semiconductor industry that supports memory devices, ICs, photovoltaic devices, etc. Photoluminescence (PL) is an attractive silicon characterization technique because it is contactless and provides information on bulk impurities, defects, surface states, optical properties, and doping concentration. It can provide high resolution spectra, generally with the sample at low temperature and room-temperature spectra. The photoluminescence properties of silicon at low temperature are reviewed and discussed in this study. In this paper, silicon bulk PL spectra are shown in multiple peak positions at low temperature. They correspond with various impurities such as In, Al, and Be, phonon interactions, for example, acoustical phonons and optical phonons, different exciton binding energies for boron and phosphorus, dislocation related PL emission peak lines, and oxygen related thermal donor PL emissions.

References

  1. R. K. Crouch, Phys. Rev. B5, 3111 (1972).
  2. D. Gwinner et al., Phys. Stat. Sol. A65, 99 (1981).
  3. D. Gwinner et al, J. Phys. 44, 141 (1983). https://doi.org/10.1051/jphys:01983004402014100
  4. N. A. Drozdov et al., Sov. Phys. JETP letter. 23, 597 (1976).
  5. K. Sumino et al., Phys. Stat. Sol A78, 639 (1983). https://doi.org/10.1002/pssa.2210780231
  6. M. Thewalt et al., Phys. Rev. Lett. 57, 1939 (1986). https://doi.org/10.1103/PhysRevLett.57.1939
  7. N. A Drozdov et al., Sov. Phys. JETP Lett. 23, 597 (1976).
  8. N. A Drozdov et al., Phys. Stat. Sol B83, 137 (1977).
  9. F. Shimura, Semiconductors and Semimetals, 42, 251 (1994). https://doi.org/10.1016/S0080-8784(08)60250-1
  10. R. A. Modavis et al., Appl. Phys. Lett. 59, 954 (1990).
  11. M. O. Henry et al., J. Phys. C, 14, 255 (1981). https://doi.org/10.1088/0022-3719/14/3/009
  12. C. S. Fuller et al., Phys. Rev. 96, 833 (1954).
  13. W. Kaiser et al., Phys. Rev. 112, 1546 (1958). https://doi.org/10.1103/PhysRev.112.1546
  14. G. S. Oehrlein et al., In Proc. Of the 13th Int. Conf. On Defects in Semi. 701, 1984.
  15. M. Tajima et al., Jpn. J. Appl. 18, 1401 (1979). https://doi.org/10.1143/JJAP.18.1401
  16. A. Steele et al., Can. J. Phys. 67, 268 (1989). https://doi.org/10.1139/p89-047
  17. J. Weber et al., MRS Symposia Proc. 59, 147 (1986).
  18. A. Doren et al., Material Science Forum 10-12, 967 (1986). https://doi.org/10.4028/www.scientific.net/MSF.10-12.967
  19. P. J. Dean et al., Phys. Rev. 161, 711 (1967). https://doi.org/10.1103/PhysRev.161.711
  20. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, 83, 19886.
  21. O. Madelung, Semiconductor Basic Data, Springer-Verlag, 11, 1996.
  22. Collaway, J. Quantum Theory of the Solid State, New York, 154, 1974.
  23. J. Weber et al., J. Lumin., 24/25, 155 (1981). https://doi.org/10.1016/0022-2313(81)90241-6
  24. T. G. Brown et al., Phys. Rev. B37, 2699 (1988).
  25. R. K Willardson et al., Semiconductors and Semimetals, 49, 77 (1997). https://doi.org/10.1016/S0080-8784(08)62501-6
  26. R. Sauce et al., Appl. Phys. A, 36, 1 (1985).
  27. P. Bruesch, Phonons: Theory and Experiments II, Springer-Verlag, 1, 1986.