DOI QR코드

DOI QR Code

Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers

  • Kim, Nammee (Department of Physics, Soongsil University)
  • Received : 2014.03.28
  • Accepted : 2014.03.31
  • Published : 2014.05.30

Abstract

We study the ballistic spin transport properties in a two-dimensional electron gas system in the presence of magnetic barriers using a transfer matrix method. We concentrate on the size-effect of the magnetic barriers parallel to a two-dimensional electron gas plane. We calculate the transmission probability of the ballistic spin transport in the magnetic barrier structure while varying the width of the magnetic barriers. It is shown that resonant tunneling oscillation is affected by the width and height of the magnetic barriers sensitively as well as by the inter-spacing of the barriers. We also consider the effect of additional electrostatic modulation on the top of the magnetic barriers, which could enhance the current spin polarization. Because all-semiconductor-based devices are free from the resistance mismatch problem, a resonant tunneling structure using the two-dimensional electron gas system with electric-magnetic modulation would play an important role in future spintronics applications. From the results here, we provide information on the physical parameters of a device to produce well-defined spin-polarized current.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006). https://doi.org/10.1038/nature04937
  2. G. Papp and F. M. Peeters, Appl. Phys. Lett 78, 2184 (2001). https://doi.org/10.1063/1.1360224
  3. Ronald Benjamin and Colin Benjamin, Phys. Rev. B 69, 085318 (2004). https://doi.org/10.1103/PhysRevB.69.085318
  4. T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 98, 156601 (2007). https://doi.org/10.1103/PhysRevLett.98.156601
  5. Y. M. Lu, J. W. Cai, S. Y. Huang, D. Qu, B. F. Miao, and C. L. Chien, Phys. Rev. B 87, 2204409(R) (2013).
  6. N. Vliestra, J. Shan, V. Castel, and B. J. van Wees, Phys. Rev. B 87, 184421 (2013). https://doi.org/10.1103/PhysRevB.87.184421
  7. E. van der Bijl, R. E. Troncoso, and R. A. Duine, Phys. Rev. B. 88, 064417 (2013). https://doi.org/10.1103/PhysRevB.88.064417
  8. Feng Zhai and H. Q. Xu, Appl. Phys. Lett. 88, 032502 (2006). https://doi.org/10.1063/1.2166204
  9. Y. Wang, Y. Jiang, X. W. Zhang, and Z. G. Yin, J. Appl. Phys. Lett. 108, 073703 (2010).
  10. N. Kim and H. Kim, arXiv:1403.0067 [cond-mat. mes-hall].
  11. A. Slobodskyy, C. Gould, T. Slobodskyy, C. R. Becker, G. Schmidt, and L. W. Molenkamp, Phys. Rev. Lett. 90, 246601 (2003). https://doi.org/10.1103/PhysRevLett.90.246601
  12. M. K. Li, T. W. Kang, and N. M. Kim, Appl. Phy. Lett. 94, 123505 (2009). https://doi.org/10.1063/1.3110048
  13. Zhenhua Wu, F. M. Peeters, and Kai Chang, Phys. Rev. B 82, 115211 (2010). https://doi.org/10.1103/PhysRevB.82.115211
  14. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990). https://doi.org/10.1063/1.102730
  15. G. A. Prinz, Science 282, 1660 (1998). https://doi.org/10.1126/science.282.5394.1660
  16. M. Ramezani Masir, P. Vasilopoulos, and F. M. Peeters, Appl. Phys. Lett. 93, 242103 (2008). https://doi.org/10.1063/1.3049600
  17. K. C. Seo, G. Ihm, K.-H. Ahn, and S. J. Lee, J. Appl. Phys. Lett. 95, 7252 (2004).
  18. J. W. Kim, N. Kim, S. J. Lee, and T. W. Kang, Semicon. Sci. Technol. 21, 647 (2006). https://doi.org/10.1088/0268-1242/21/5/014

Cited by

  1. Tunneling effect on double potential barriers GaAs and PbS vol.1008, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1008/1/012012