DOI QR코드

DOI QR Code

Bipolar Pulse Bias Effects on the Properties of MgO Reactively Deposited by Inductively Coupled Plasma-Assisted Magnetron Sputtering

  • Received : 2014.05.30
  • Accepted : 2014.05.31
  • Published : 2014.05.30

Abstract

MgO thin films were deposited by internal ICP-assisted reactive-magnetron sputtering with bipolar pulse bias on a substrate to suppress random arcs. Mg is reactively sputtered by a bipolar pulsed DC power of 100 kHz into ICP generated by a dielectrically shielded internal antenna. At a mass flow ratio of $Ar/O_2$ = 10 : 2 and an ICP/sputter power ratio of 1 : 1, optimal film properties were obtained (a powder-like crystal orientation distribution and a RMS surface roughness of approximately 0.42 nm). A bipolar pulse substrate bias at a proper frequency (~a few kHz) prevented random arc events. The crystalline preferred orientations varied between the (111), (200) and (220) orientations. By optimizing the plasma conditions, films having similar bulk crystallinity characteristics (JCPDS data) were successfully obtained.

Keywords

ICP;Bipolar pulse bias;MgO;Reactive sputtering

References

  1. S. Kim, H. Lee, S. park, S. Yoo, M. Cho, S. Han and B. Lim, J. Kor. Inst. Surf. Eng. 47, 53 (2014). https://doi.org/10.5695/JKISE.2014.47.1.053
  2. S. Chun and J. Baek, J. Kor. Inst. Surf. Eng. 47, 86 (2014). https://doi.org/10.5695/JKISE.2014.47.2.086
  3. Y. You and J. Joo, J. Kor. Inst. Surf. Eng. 46, 168 (2014).
  4. M. Hashimoto, Y. Onozaki, H. Uchida, and Y. Matsumura, Rev. Sci. Instrum., 71, 999 (2000). https://doi.org/10.1063/1.1150371
  5. K. H. Nam and J. G. Han, Surf. Coat. Technol. 174, 212 (2003).
  6. B. W. Byrum, Jr., IEEE Trans. Electron Devices, 22, 685 (1975). https://doi.org/10.1109/T-ED.1975.18204
  7. M. P. Delpanke-Ogletree, M. Ye, R. Winand, J. Mater. Res. 14, 2133 (1999). https://doi.org/10.1557/JMR.1999.0288
  8. M. Yamashita, J. Vac. Sci. Technol A 7, 151 (1989). https://doi.org/10.1116/1.575744
  9. J. J. Lee and J.H. Joo, Surf. Coat. Technol. 169-170, 353 (2003). https://doi.org/10.1016/S0257-8972(03)00112-9
  10. J. H. Joo, J. Vac. Sci. Technol A 18, 2006 (2000). https://doi.org/10.1116/1.582463
  11. D. K. Lee, J. J. Lee, and J. H. Joo, Surf. Coat. Technol. 173-174, 1234 (2003).
  12. B. H. Park, D. H Jung, G. R. Lee, J. J. Lee and J. H. Joo, Surf. Coat. Technol. 174-175, 643 (2003). https://doi.org/10.1016/S0257-8972(03)00354-2
  13. M. Dickson, F. Qian, J. Hopwood, J. Vac. Sci. Technol. A15, 340 (1997).
  14. D. H. Kang, D. K. Lee, K. B. Kim, J. J. Lee, and J. H. Joo, Appl. Phys. Letts, 84, 3283 (2004). https://doi.org/10.1063/1.1715140

Acknowledgement

Grant : Development of High-Density Plasma Technologies for the Thin-Film Deposition of Nanoscale Semiconductor and Flexible Display Processing

Supported by : Ministry of Knowledge Economy (MKE)